This entry does not contain data itself, it is for the website, the NASA Disasters Mapping Portal: https://maps.disasters.nasa.gov The Disasters Mapping Portal contains numerous datasets that can be streamed from the Portal into GIS software. The Disasters Applications area promotes the use of Earth observations to improve prediction of, preparation for, response to, and recovery from natural and technological disasters. Disaster applications and applied research on natural hazards support emergency mitigation approaches, such as early warning systems, and providing information and maps to disaster response and recovery teams. NOTE: Removed "2017 - Present" from "Temporal Applicability" since it's not valid NOTE: Removed "Event-Specific and Near-Real Time Products" from "Update Frequency" since it's not valid
High impact GIS projects in 45 seconds or less (ArcGIS Blog)._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Esri Disaster Response Program (DRP) assistance request form. Use this website to request assistance.To help jump-start your response to COVID-19, Esri is providing the ArcGIS Hub Coronavirus Response template at no cost through a six-month donation of ArcGIS Online with ArcGIS Hub Basic. The template includes examples, materials, and configurations to rapidly deploy an ArcGIS Hub environment. ArcGIS Hub is a framework to build your own website to visualize and analyze the COVID-19 crisis in the context of your organization's or community's population and assets._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Medical Emergency Response StructuresThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays hospitals, medical centers, ambulance services, fire stations and EMS stations in the U.S. Per the USGS, "Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations."Greendale Fire DepartmentData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Medical & Emergency Response) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 135 (USGS National Structures Dataset - USGS National Map Downloadable Data Collection)OGC API Features Link: (Medical Emergency Response Structures - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: The National MapFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Theme CommunityThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes."For other NGDA Content: Esri Federal Datasets
In this webinar, you’ll learn more about Esri solutions for COVID-19 response and business continuity, as well as get a checklist of best practices to help ensure your apps remain operational in a virtual EOC. Finally, learn how your agency can access a complimentary six-month subscription to ArcGIS to support your response needs._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
ArcGIS Dashboards Training Videos for COVID-19With the current COVID-19 situation across the world, there’s been a proliferation of corona virus themed dashboards emerging over the last few weeks in ArcGIS Online. Many of these were created with ArcGIS Dashboards, which enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
The size and share of the market is categorized based on Type (Remote Sensing, Light Detection and Ranging (LiDAR), Satellite Imaging) and Application (Aerospace & Defense, Government, Chemicals, Energy & Utilities, Healthcare, Construction, Oil & Gas) and geographical regions (North America, Europe, Asia-Pacific, South America, and Middle-East and Africa).
An Emergency Operations Center (EOC) is the physical location at which the coordination of information and resources to support incident management (on-scene operations) activities normally takes place. An EOC may be a temporary facility or may be located in a more central or permanently established facility, perhaps at a higher level of organization within a jurisdiction. EOCs may be organized by major functional disciplines (e.g., fire, law enforcement, medical services), by jurisdiction (e.g., Federal, State, regional, tribal, city, county), or by some combination thereof. The WEBSITE attribute contains a link to Emergency Operations Center or State Emergency Management website. These links contain updated information on emergencies and points of contact. The TRAFFIC attribute contains an link to dynamic traffic information via State 511 Intelligent Traffic System (ITS) website or Department of Transportation (DOT) website.FEMA's Directory Information: http://www.fema.gov/state-offices-and-agencies-emergency-management. Note: The most up to date contact information is found on the State or Territory website.
Use ArcGIS Insights for Understanding and Responding to COVID-19.Help your organization respond efficiently and plan effectively using ArcGIS Insights tools and data visualizations._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
This layer shows demographic context for emergency response efforts. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households who do not have access to internet. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001, B08201, B09021, B16003, B16004, B17020, B18101, B25040, B25117, B27010, B28001, B28002 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Natural Disaster Detection IoT Market size was valued at USD 1.2 Billion in 2023 and is projected to reach USD 4.06 Billion by 2030, growing at a CAGR of 37.2 % during the forecast period 2024-2030.
Global Natural Disaster Detection IoT Market Drivers
Improved Early Warning Systems: The Internet of Things (IoT) makes it possible to implement sophisticated early warning systems for natural disasters such hurricanes, floods, tsunamis, earthquakes, and wildfires. Sensors placed in disaster-prone locations are able to identify environmental anomalies and precursor signals, sending real-time data to central monitoring systems. This makes it easier to notify authorities and locals in a timely manner, lessening the effects of calamities and maybe saving lives.
Enhanced Surveillance and Forecasting: Internet of Things-capable sensors and surveillance apparatuses furnish constant data gathering and examination capacities, imparting discernment into environmental factors like temperature, humidity, pressure, seismic activity, and meteorological trends. This data is processed using sophisticated analytics and machine learning algorithms to find patterns, trends, and early warning signs of impending disasters. This allows for more accurate forecasting and preparedness planning.
Remote sensing and surveillance of disaster-prone locations are made possible by Internet of Things (IoT) devices outfitted with cameras, drones, and satellite imaging technology. Emergency responders and decision-makers can benefit greatly from the situational awareness that these sensors can provide by monitoring changes in the topography, vegetation, water levels, and integrity of infrastructure. Efforts to assess damage, prepare for emergencies, and conduct catastrophe assessments are improved by real-time imagery and video feeds.
Integration with Geographic Information Systems (GIS): Spatial analysis, mapping, and visualization of disaster-related data are made easier by the integration of IoT data with GIS platforms. Decision-making processes are improved by geographic data overlays, risk maps, and geospatial modeling tools, which help authorities identify high-risk areas, allocate resources wisely, and schedule evacuation routes and shelter places.
Developments in Sensor Technology: The spread of IoT devices for natural disaster detection is driven by ongoing developments in sensor technology, such as downsizing, enhanced sensitivity, and low power consumption. Highly weatherproof and resilient sensors can survive extreme weather conditions, which makes them appropriate for use in dangerous and remote areas that are vulnerable to natural disasters.
Government Initiatives and Regulations: Across the globe, governments and regulatory agencies are investing more money and requiring the use of Internet of Things (IoT)-based technologies for resilience and disaster management. Adoption of IoT technologies to improve catastrophe warning, response, and recovery capacities is encouraged by national disaster preparedness programs, financing initiatives, and regulatory frameworks.
Collaborations between the Public and Private Sectors: In the development of Internet of Things (IoT)-based solutions for natural disaster detection, cooperation between public agencies, private businesses, academic institutions, and non-governmental organizations (NGOs) promotes innovation and knowledge exchange. In order to improve community safety and catastrophe resilience, technological development, pilot projects, and field testing are driven by public-private partnerships (PPPs) and collaborative research activities.
Growing Concern and Awareness of Climate Change: The need for Internet of Things (IoT) solutions for disaster detection and mitigation has increased as a result of growing global awareness of climate change and its effects on the frequency and intensity of natural catastrophes. The necessity for preventive actions to mitigate climate-related hazards is acknowledged by stakeholders from all industries, which motivates investments in IoT infrastructure, research, and innovation.
Become an ArcGIS Hub Specialist.ArcGIS Hub is a cloud-based engagement platform that helps organizations work more effectively with their communities. Learn how to use ArcGIS Hub capabilities and related technology to coordinate and engage with external agencies, community partners, volunteers, and citizens to tackle the projects that matter most in your community._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
GIS in the age of community health (Learn ArcGIS Path). Arm yourself with hands-on skills and knowledge of how GIS tools can analyze health data and better understand diseases._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Infectious disease experts have predicted a pandemic, saying it was not a question of if but when. Drawing on experiences with severe acute respiratory syndrome (SARS), avian influenza (H5N1), and novel influenza A (H1N1), the World Health Organization (WHO) and other health authorities, such as the Centers for Disease Control and Prevention (CDC), urged nations and local governments to prepare pandemic response plans. Many ministries of health and subnational departments of health around the world have activated those plans in response to coronavirus and are sharing data as required by the updated International Health Regulations.Esri's work with health organizations and government leaders has proven location intelligence from geographic information system (GIS) technology and data to be critical for the following:Assessing risk and evaluating threatsMonitoring and tracking outbreaksMaintaining situational awarenessEnsuring resource allocationNotifying agencies and communitiesThe current coronavirus disease pandemic presents an opportunity to build on the experience and readiness of Esri's existing global user community in health and human services. Through real-time maps, apps, and dashboards, GIS will also facilitate a seamless flow of relevant data as a component of the response from local to global levels. A compelling case exists for building on top of the public health GIS foundation that is already in place both in the United States and around the world.After reading this paper, leadership and senior staff should understand the following:The necessity to apply location intelligence to public health processes in coronavirus responseHow GIS can support immediate and long-term actionWhat resources Esri provides its customers
Part 2 of an overview of epidemiology, and what ArcGIS Insights offers for the analytical needs of the epidemiologist.Key topics with examples covering major areas of epidemiological study and the scope of GIS to provide an analytical framework. _Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
GIS and pandemic influenza planning and response (White Paper).Around the world, public health organizations at all levels of government and the partners that support them are responding to pandemic influenza.Infectious disease experts predicted a pandemic, saying it was not a question of if but when.Pandemic influenza is a global outbreak of disease that occurs when a new influenza virus appears or emerges in the human population; causes serious illness; and spreads easily from person to person, occurring over a wide geographic area and often crossing geographic boundaries. Pandemic outbreaks are caused by subtypes of influenza virus that have never before circulated among people. _Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Mapping incident locations from a CSV file in a web map (YouTube video).View this short demonstration video to learn how to geocode incident locations from a spreadsheet in ArcGIS Online. In this demonstration, the presenter drags a simple .csv file into a browser-based Web Map and maps the appropriate address fields to display incident points allowing different types of spatial overlays and analysis. _Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Learn how to visualize an E.coli outbreak by importing a spreadsheet of data. In this Learn GIS PDF lesson you will:Build a spreadsheet in the CSV format and import it into a map. Mark a location using a Map Note. Use a proximity tool to generate lines illustrating data and origin points linesThe lesson takes approximately 30 minutes to complete._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
ArcGIS Technology for Mapping COVID-19 (Esri Training).Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic. This plan will teach you the core ArcGIS technology necessary to understand, prepare for, and respond to COVID-19 in your community or organization.More information about Esri training..._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
COVID-19 data available by county from Johns Hopkins University (ArcGIS Blog).Johns Hopkins University is now providing data in a map layer by county for COVID-19 cases and deaths. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. See the FAQ or contact Johns Hopkins for more information._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
This entry does not contain data itself, it is for the website, the NASA Disasters Mapping Portal: https://maps.disasters.nasa.gov The Disasters Mapping Portal contains numerous datasets that can be streamed from the Portal into GIS software. The Disasters Applications area promotes the use of Earth observations to improve prediction of, preparation for, response to, and recovery from natural and technological disasters. Disaster applications and applied research on natural hazards support emergency mitigation approaches, such as early warning systems, and providing information and maps to disaster response and recovery teams. NOTE: Removed "2017 - Present" from "Temporal Applicability" since it's not valid NOTE: Removed "Event-Specific and Near-Real Time Products" from "Update Frequency" since it's not valid