This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: July 27, 2021National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
These data contain selected census tract level demographic indicators (estimates) from the 2015-2019 American Community Survey representing the percent of the population (Age 25+) with no high school diploma.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This map layer is a subset of the Columbus Points of Interest layer and shows education facilities in the City of Columbus. Daycares, elementary, middle, and high schools, colleges and universities, vocational schools, and other educational entities are included. This layer is maintained through a cooperative effort by multiple departments of the City of Columbus using first-hand knowledge of the area as well as a variety of authoritative data sources. While significant effort is made to ensure the data is as accurate and comprehensive as possible, some points of interest may be excluded and included points may not be immediately updated as change occurs.
Colleges and UniversitiesThis feature layer, utilizing data from the National Center for Education Statistics (NCES), displays colleges and universities in the U.S. and its territories. NCES uses the Integrated Postsecondary Education Data System (IPEDS) as the "primary source for information on U.S. colleges, universities, and technical and vocational institutions." According to NCES, this layer "contains directory information for every institution in the 2021-22 IPEDS universe. Includes name, address, city, state, zip code and various URL links to the institution's home page, admissions, financial aid offices and the net price calculator. Identifies institutions as currently active, institutions that participate in Title IV federal financial aid programs for which IPEDS is mandatory. It also includes variables derived from the 2021-22 Institutional Characteristics survey, such as control and level of institution, highest level and highest degree offered and Carnegie classifications."Gallaudet UniversityData currency: 2021Data source: IPEDS Complete Data FilesData modification: Removed fields with coded values and replaced with descriptionsFor more information: Integrated Postsecondary Education Data SystemSupport documentation: IPEDS Complete Data Files > Directory Information > DictionaryFor feedback, please contact: ArcGIScomNationalMaps@esri.comU.S. Department of Education (ED)Per ED, "ED's mission is to promote student achievement and preparation for global competitiveness by fostering educational excellence and ensuring equal access.ED was created in 1980 by combining offices from several federal agencies." ED's employees and budget "are dedicated to:Establishing policies on federal financial aid for education, and distributing as well as monitoring those funds.Collecting data on America's schools and disseminating research.Focusing national attention on key educational issues.Prohibiting discrimination and ensuring equal access to education."
https://resources.data.gov/open-licenses/https://resources.data.gov/open-licenses/
The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimates (EDGE) program develops bi-annually updated point locations (latitude and longitude) for private schools included in the NCES Private School Survey (PSS). The PSS is conducted to provide a biennial count of the total number of private schools, teachers, and students. The PSS school location and associated geographic area assignments are derived from reported information about the physical location of private schools. The school geocode file includes supplemental geographic information for the universe of schools reported in the most current PSS school collection, and they can be integrated with the survey files through use of institutional identifiers included in both sources. For more information about NCES school point data, see: https://nces.ed.gov/programs/edge/Geographic/SchoolLocations and https://nces.ed.gov/programs/edge/Geographic/LocaleBoundaries
Previous collections are available for the following years:
2021-22 2019-20 2017-18 2015-16
All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
These geocoded locations are based on the Allegheny County extract of Educational Names & Addresses (EdNA) via Pennsylvania Department of Education website as of April 19, 2018. Several addresses were not able to be geocoded (ex. If PO Box addresses were provided, they were not geocoded.)If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below. Category: Education Organization: Allegheny County Department: Department of Human Services Temporal Coverage: as of April 19, 2018 Data Notes: Coordinate System: GCS_North_American_1983 Development Notes: none Other: none Related Document(s): Data Dictionary - none Frequency - Data Change: April, 19, 2018 data Frequency - Publishing: one-time Data Steward Name: See http://www.edna.ed.state.pa.us/Screens/Extracts/wfExtractEntitiesAdmin.aspx for more information. Data Steward Email: RA-DDQDataCollection@pa.gov (Data Collection Team)
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
Thinking Spatially Using GIS
Thinking Spatially Using GIS is a 1:1 set of instructional
materials for students that use ArcGIS Online to teach basic geography concepts
found in upper elementary school and above.
Each module has both a teacher and student file.
Ferdinand Magellan was the first European explorer to reach the Pacific Ocean by crossing the Atlantic Ocean when his expedition sailed through an opening, or strait, near the tip of South America in 1520. He named the ocean Mar Pacifico, which means peaceful sea. The strait, which connected the Atlantic and Pacific oceans, was later named for him.
At that point in his journey, Magellan and his fleet had been at sea for more than a year. He had lost two of his five ships. Now he would cross the Pacific Ocean with three ships, looking for the coast of Asia and the Spice Islands. However, he had no idea the Pacific Ocean would be so big!
The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG
All Esri GeoInquiries can be found at http://www.esri.com/geoinquiries
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In successful geoinformatics education, students’ active role in the learning process, e.g. through applying self-assessment, show an increasing interest but the evidence of benefits and challenges of self-assessment are sporadic. In this article, we examine the usefulness of an online self-assessment tool developed for geoinformatics education. We gathered data in two Finnish universities on five courses (n = 11–73 students/course) between 2019 and 2021. We examined 1) how the students’ self-assessed knowledge and understanding in geoinformatics subject topics changed during a course, 2) how the competencies at the end of a course changed between the years in different courses, and 3) what was the perceived usefulness of the self-assessment approach among the students. The results indicate support for the implementation of self-assessment, both as a formative and summative assessment. However, it is crucial to ensure that the students understand the contents of the self-assessment subject topics. To increase students’ motivation to take a self-assessment, it is crucial that the teacher actively highlights how it supports their studying and learning. As the teachers of the examined courses, we discuss the benefits and challenges of the self-assessment approach and the applied tool for the future development of geoinformatics education.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Point feature class representing schools and other educational related facilities including registered day care.
117 original plate boundaries from Esri Data and Maps (2007) edited to better match 10 years of earthquakes, land forms and bathymetry from Mapping Our World's WSI_Earth image from module 2. Esri Canada's education layer of plate boundaries and the Smithsonian's ascii file from the download section of the 'This Dynamic Planet' site plate boundaries were used to compare the resulting final plate boundaries for significant differences.
Table from the American Community Survey (ACS) 5-year series on education enrollment and attainment related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B14007/B14002 School Enrollment, B15003 Educational Attainment. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
Community GIS - Education & EnterpriseUploaded as hosted feature layer on 19.10.2018 for use in My Doorstep for creating larger icons at larger scales. This is to optimise touch screen user experience.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Cloud GIS Market size was valued at USD 890.81 Million in 2023 and is projected to reach USD 2298.38 Million by 2031, growing at a CAGR of 14.5% from 2024 to 2031.
Key Market Drivers
• Increased Adoption of Cloud Computing: Cloud computing provides scalable resources that can be adjusted based on demand, making it easier for organizations to manage and process large GIS datasets. The pay-as-you-go pricing models of cloud services reduce the need for significant upfront investments in hardware and software, making GIS more accessible to small and medium-sized enterprises.
• Growing Need for Spatial Data Integration: The ability to integrate and analyze large volumes of spatial and non-spatial data helps organizations make more informed decisions. The proliferation of Internet of Things (IoT) devices generates massive amounts of spatial data that can be processed and analyzed using Cloud GIS.
• Advancements in GIS Technology: User-friendly interfaces and visualization tools make it easier for non-experts to use GIS applications. Advanced analytical tools and machine learning algorithms available in cloud platforms enhance the capabilities of traditional GIS.
• Increased Demand for Real-Time Data: Industries like disaster management, transportation, and logistics require real-time data processing and analysis, which is facilitated by Cloud GIS. The need for up-to-date maps and spatial data drives the adoption of cloud-based GIS solutions.
• Collaboration and Sharing Needs: The ability to access GIS data and collaborate from anywhere enhances productivity and supports remote work environments. Cloud GIS supports simultaneous access by multiple users, facilitating better teamwork and data sharing.
• Urbanization and Smart Cities Initiatives: Cloud GIS is crucial for smart city initiatives, urban planning, and infrastructure development, providing the tools needed for efficient resource management. Supports planning and monitoring of sustainable development projects by providing comprehensive spatial analysis capabilities.
• Government and Policy Support: Increased government investment in geospatial technologies and smart infrastructure projects drives the adoption of Cloud GIS. Compliance with regulatory requirements for environmental monitoring and land use planning necessitates the use of advanced GIS tools.
• Industry-Specific Applications: Precision farming and land management benefit from the advanced analytics and data integration capabilities of Cloud GIS. Epidemiology and public health monitoring rely on spatial data analysis for tracking disease outbreaks and resource allocation.
The Education Facility point feature class represents public and private primary, secondary, and post-secondary school facilities in the Des Moines, Iowa metropolitan area. This dataset was created for a FEMA grant project (2008 Legislative Pre-Disaster Mitigation Grant Program, LPDM-2008-IA-77-002) to develop data and a methodology for performing GIS-based Disaster Mitigation Act of 2000 (DMA2000) Multi Hazard Mitigation Plan Risk Assessments. The data were developed from local, state, and national sources and prepared by the University of Northern Iowa GeoInformatics Training, Research, Education and Extension Center (GeoTree ) between May 2010 and April 2011. The data were accepted and are maintained by the City of Des Moines and Des Moines Area Regional GIS partners. This dataset was developed for use in the Des Moines Area Regional GIS, which supports public safety response and emergency management in the Des Moines metropolitan area and surrounding counties. The Des Moines Area Regional GIS is a shared data repository hosted by the City of Des Moines. The Regional GIS partnership includes City of Des Moines, Polk County, and several cities within Polk County. Each partner is responsible for maintaining data for their respective jurisdiction.
Community GIS — Education & EnterpriseUploaded as hosted feature layer on 19.10.2018 for use in My doorstep for creating larger icons at larger scales. This is to optimise touch screen user experience.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This point datalayer shows the locations of schools in Massachusetts. Schools appearing in this layer are those attended by students in pre-kindergarten through high school. Categories of schools include public, private, charter, collaborative programs, and approved special education. This data was originally developed by the Massachusetts Department of Environmental Protection’s (DEP) GIS Program based on database information provided by the Massachusetts Department of Education (DOE). The update published on April 17th, 2009 was based on listings MassGIS obtained from the DOE as of February 9th, 2009. The layer is stored in ArcSDE and distributed as SCHOOLS_PT. Only schools located in Massachusetts are included in this layer. The DOE also provides a listing of out-of-state schools open to Massachusetts' residents, particularly for those with special learning requirements. Please see http://profiles.doe.mass.edu/outofstate.asp for details. Updated September 2018.
Explore the spatial patterns of the Human Development Index (HDI) to identify regional pat- terns and causal factors in the data. The GeoInquiry activity is available here.Educational standards addressed:APHG: VI:B2 Analyze spatial patterns of social and economic development – GNI per capita. APHG: VI:B1 Explain social and economic measures of development – HDI, Gender Inequali- ty Index (GII), Total Fertility Rate (TRF).APHG: VI:B6 Social and economic measures of development — Changes in fertilityand mortalityThis map is part of a Human Geography GeoInquiry activity. Learn more about GeoInquiries.
Thinking Spatially Using GIS
Thinking Spatially Using GIS is a 1:1 set of instructional
materials for students that use ArcGIS Online to teach basic geography concepts
found in upper elementary school and above.
Each module has both a teacher and student file.
Meteorologists study storms that produce tornadoes. They use tools such as forecasting (predicting the weather), research (observing and trying to understand the weather), and storm chasing (following and watching storms close-up). Some tornadoes and tornado outbreaks may stick even in your memory. Some students grow up to study the science of tornadoes because of a personal experience or out of curiosity about an outbreak. Perhaps you will decide to be a meteorologist yourself one day!
In this GIS activity, you will see how tornadoes are classified into weak, strong, and violent categories. You will also take a close look at some of the memorable tornado outbreaks in history.
Let’s explore Tornado Alley.
The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG
All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries
This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: July 27, 2021National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.