100+ datasets found
  1. m

    Massachusetts Elevation Finder

    • gis.data.mass.gov
    Updated Sep 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2020). Massachusetts Elevation Finder [Dataset]. https://gis.data.mass.gov/datasets/massachusetts-elevation-finder
    Explore at:
    Dataset updated
    Sep 2, 2020
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Massachusetts
    Description

    With this mapping application, users can click anywhere within the Commonwealth of Massachusetts to find the elevation at that location in both meters and feet. The elevation data digital elevation model (DEM), in integer units, are derived from statewide Lidar (2013-2021) Terrain Data. The Vertical Datum of the lidar data used to create the DEM is NAVD88 – Geoid18 (m).

    The map displays a tile service that shows the DEM using a custom color ramp along with Lidar-derived shaded relief image. The symbology was created by MassGIS staff in ArcGIS Pro using the 'multiply' layer blending option. At medium and large scales the MassGIS Map Features for Imagery tile layer displays atop the imagery.Click the "i" button in the lower left to view a legend.This application is hosted by MassGIS at ArcGIS Online.

  2. USA Topo Maps

    • data.openlaredo.com
    • noveladata.com
    • +20more
    html
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Portal (2025). USA Topo Maps [Dataset]. https://data.openlaredo.com/dataset/usa-topo-maps
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 1, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    GIS Portal
    Area covered
    United States
    Description
    Mature Support Notice: This item is in mature support as of June 2021. A replacement item has not been identified at this time.

    This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.

    The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.

    To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.

    Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:

    Grand Canyon, Arizona

    Golden Gate, California

    The Statue of Liberty, New York

    Washington DC

    Canyon De Chelly, Arizona

    Yellowstone National Park, Wyoming

    Area 51, Nevada

  3. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  4. World Topographic Map (with Contours and Hillshade)

    • hub.arcgis.com
    Updated Jul 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). World Topographic Map (with Contours and Hillshade) [Dataset]. https://hub.arcgis.com/maps/18d32a699af64bfba4e78eba5a4dd705
    Explore at:
    Dataset updated
    Jul 6, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This vector tile layer presents the World Topographic Map (with Contours and Hillshade) style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style, including both vector contour lines and vector hillshade. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. This vector tile layer provides unique capabilities for customization and high-resolution display.This is a multisource vector map style. The root.json style file calls three vector tile services to display all the data in the map. The "esri" source contains all the basemap tiles for this layer. The other two sources are "contours" and "hillshade". Click the View style button on right to see the json. The multisource section of this code is shown below."sources": { "esri": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer" }, "contours": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Contours_v2/VectorTileServer" }, "hillshade": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Hillshade_v2/VectorTileServer" } },This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic (Vector) web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers. Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.

  5. U

    1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.usgs.gov
    • s.cnmilf.com
    • +4more
    Updated Feb 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:77ae0551-c61e-4979-aedd-d797abdcde0e
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...

  6. n

    Shuttle Radar Topography Mission (SRTM) Images

    • cmr.earthdata.nasa.gov
    • datasets.ai
    • +2more
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Shuttle Radar Topography Mission (SRTM) Images [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220566448-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Feb 11, 2000 - Present
    Area covered
    Description

    Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated:

    • Radar Image
    • Radar Image with Color as Height
    • Radar Image with Color Wrapped Fringes
      -Shaded Relief
    • Perspective View with B/W Radar Image Overlaid
    • Perspective View with Radar Image Overlaid, Color as Height
    • Perspective View of Shaded Relief
    • Perspective View with Landsat or other Image Overlaid
    • Contour Map - B/W with Contour Lines
    • Stereo Pair
    • Anaglypgh

    The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.

  7. U

    1 Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.usgs.gov
    • datasets.ai
    • +2more
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1 Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is 1 arc-second (approximately 30 m) resolution. The elevations in this Digital Elevation Model (DEM) represent the topographic bare-earth surface. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The seamless 1 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 ( ...

  8. a

    DEM - Merged 30M Lattice

    • azgeo-open-data-agic.hub.arcgis.com
    Updated Jun 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AZGeo ArcGIS Online (AGO) (2020). DEM - Merged 30M Lattice [Dataset]. https://azgeo-open-data-agic.hub.arcgis.com/maps/e72f038abc0144c1ae0b5939d860fac9
    Explore at:
    Dataset updated
    Jun 26, 2020
    Dataset authored and provided by
    AZGeo ArcGIS Online (AGO)
    Description

    This data set consists of a set of 136 ESRI formatted GRID data sets representing elevations in meters for the state of Arizona. Each file covers a half degree block and as a collection they cover the entire State of Arizona. The data were created by processing U.S.Geological Survey 30 meter Digital Elevation Model files for all of the 7.5 minute quadrangle map areas in Arizona. The processing produced ESRI formatted lattices (GRIDs) for each quadrangle. These were then merged into the half degree blocks.

  9. a

    Elevation Contours

    • hub.arcgis.com
    • maps-eastonma.hub.arcgis.com
    Updated Dec 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Easton, Massachusetts (2017). Elevation Contours [Dataset]. https://hub.arcgis.com/maps/eastonma::elevation-contours
    Explore at:
    Dataset updated
    Dec 1, 2017
    Dataset authored and provided by
    Easton, Massachusetts
    Area covered
    Description

    Smoothed contours were produced at 2 foot intervals from topographic vector data (breaklines) collected by photogrammetrists. Breaklines denote the major terrain shifts as percieved by viewing the aerial photography stereoscopically. Major breaks, such as the top and bottom of hills were marked with the breaklines. Point data (DTM) was used to supplant the breakline data to provide enough information to model the terrain of the area. The data was collected at scale of 1"= 40'.

    Survey field crews surveyed 14 photo identifiable points used for photo control. All the ground control points were used in the final analytical triangulation solution. The horizontal positions were reported in feet; NAD1983 (2011) Massachusetts State Plane Coordinate System, Mainland Zone, Epoch 2010.00. Elevations were based on the NorthAmerican Vertical Datum, 1988.

    The aerial photographic mission was carried out on April 12, 2017. 459 exposures were taken in 16 flight lines at 3300' AMT resulting in a pixel resolution of 0.22' . The photography was collected with 60% overlap to ensure proper stereo viewing.

    The digital photographs were triangulated using KLT software. The interior orientations of each photo were measured, the photos were tied togther within flight lines and lastly each flight line was tied, creating one single unified block. This block was then projected into Massachusetts State Plane NAD 83 coordinates using the14 aerial photo ground control points that were collected by traditional survey. RMS formulas were used to compute error propagation and reduce error.

    The breakline and dtm data collected through the stereocompilation process was edited in KLT Atlas software to check for continuity. A TIN was generated from the edited topographic data which was then used to produce smoothed contours at 2' intervals. The contour information was then checked for errors and converted into AutoCAD .dxf format for GIS import.

  10. d

    USGS US Topo Map Collection

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). USGS US Topo Map Collection [Dataset]. https://catalog.data.gov/dataset/usgs-us-topo-map-collection
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Layered geospatial PDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, boundaries, and other selected map features. This map depicts geographic features on the surface of the earth. One intended purpose is to support emergency response at all levels of government. The geospatial data in this map are from selected National Map data holdings and other government sources.

  11. a

    Digital Elevation Model Map

    • hub.arcgis.com
    Updated Aug 12, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott County Minnesota (2015). Digital Elevation Model Map [Dataset]. https://hub.arcgis.com/documents/3eec13b4b5b14bb792bccf1b6e4c61a4
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    Scott County Minnesota
    Area covered
    Description

    Digital Elevation Model of Scott County, Minnesota.

  12. World Topographic Map

    • cacgeoportal.com
    • visionzero.geohub.lacity.org
    • +9more
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). World Topographic Map [Dataset]. https://www.cacgeoportal.com/maps/7dc6cea0b1764a1f9af2e679f642f0f5
    Explore at:
    Dataset updated
    Oct 27, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    This vector tile layer presents the World Topographic Map style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with World Hillshade for added context. This vector tile layer provides unique capabilities for customization, high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers, including Topographic (with Contours and Hillshade) multisource tile layer.Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.

  13. m

    Copernicus Digital Elevation Model (DEM) for Europe at 30 meter resolution...

    • data.mundialis.de
    • data.opendatascience.eu
    Updated Feb 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Copernicus Digital Elevation Model (DEM) for Europe at 30 meter resolution derived from Copernicus Global 30 meter dataset [Dataset]. https://data.mundialis.de/geonetwork/srv/search?resolution=30%20meters
    Explore at:
    Dataset updated
    Feb 23, 2022
    Description

    Here we provide a mosaic of the Copernicus DEM 30m for Europe and the corresponding hillshade derived from the GLO-30 public instance of the Copernicus DEM. The CRS is the same as the original Copernicus DEM CRS: EPSG:4326. Note that GLO-30 Public provides limited coverage at 30 meters because a small subset of tiles covering specific countries are not yet released to the public by the Copernicus Programme. Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters. The Copernicus DEM for Europe at 30 m in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/). Processing steps: The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in https://gdal.org/drivers/raster/vrt.html format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized: gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt The pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.

  14. i

    10-Foot Contours 24k

    • indianamap.org
    • indianamapold-inmap.hub.arcgis.com
    • +1more
    Updated Jun 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2019). 10-Foot Contours 24k [Dataset]. https://www.indianamap.org/datasets/INMap::10-foot-contours-24k/about
    Explore at:
    Dataset updated
    Jun 24, 2019
    Dataset authored and provided by
    IndianaMap
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    10-foot elevation contours for the extent of the state of Indiana, created from downloading, projecting and combining several datasets from USGS based on 7.5-minute quadrangle boundaries. These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale CONUS and Hawaii, 1:25,000-scale Alaska, and 1:20,000-scale Puerto Rico / US Virgin Island topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation. Description from the original source metadata: These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale CONUS and Hawaii, 1:25,000-scale Alaska, and 1:20,000-scale Puerto Rico / US Virgin Island topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.Source files downloaded from The National Map on 11/18/2019:https://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Muncie_W_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Danville_E_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Vincennes_E_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Louisville_W_KY_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Cincinnati_W_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Indianapolis_E_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Fort_Wayne_W_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Chicago_E_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Indianapolis_W_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Danville_W_IL_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Vincennes_W_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Chicago_W_IL_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Cincinnati_E_OH_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Muncie_E_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Louisville_E_KY_1X1_GDB.zip https://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Fort_Wayne_E_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Evansville_E_IN_1X1_GDB.ziphttps://prd-tnm.s3.amazonaws.com/StagedProducts/Contours/GDB/ELEV_Evansville_W_IN_1X1_GDB.zip

  15. Copernicus Digital Elevation Model (DEM) for Europe at 100 meter resolution...

    • zenodo.org
    • data.mundialis.de
    • +4more
    bin, png, tiff, xml
    Updated Jul 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Neteler; Markus Neteler; Julia Haas; Julia Haas; Markus Metz; Markus Metz (2024). Copernicus Digital Elevation Model (DEM) for Europe at 100 meter resolution (EU-LAEA) derived from Copernicus Global 30 meter DEM dataset [Dataset]. http://doi.org/10.5281/zenodo.6211990
    Explore at:
    png, tiff, xml, binAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Markus Neteler; Markus Neteler; Julia Haas; Julia Haas; Markus Metz; Markus Metz
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Overview:
    The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.

    The Copernicus DEM for Europe at 100 meter resolution (EU-LAEA projection) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).

    Processing steps:
    The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:

    gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt

    In order to reproject the data to EU-LAEA projection while reducing the spatial resolution to 100 m, bilinear resampling was performed in GRASS GIS (using r.proj and the pixel values were scaled with 1000 (storing the pixels as Integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.

    Projection + EPSG code:
    ETRS89-extended / LAEA Europe (EPSG: 3035)

    Spatial extent:
    north: 6874000
    south: -485000
    west: 869000
    east: 8712000

    Spatial resolution:
    100 m

    Pixel values:
    meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)

    Software used:
    GDAL 3.2.2 and GRASS GIS 8.0.0 (r.proj; r.relief)

    Original dataset license:
    https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf

    Processed by:
    mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

  16. b

    1ft Elevation Contours

    • data.bendoregon.gov
    • hub.arcgis.com
    Updated May 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Bend, Oregon (2022). 1ft Elevation Contours [Dataset]. https://data.bendoregon.gov/maps/1ft-elevation-contours
    Explore at:
    Dataset updated
    May 6, 2022
    Dataset authored and provided by
    City of Bend, Oregon
    Area covered
    Description

    The terrain dataset and contours were created using aerial Lidar collected on March 25, 2022 at a density of greater than 12 points per square meter. Lidar points classified as ground were used as the basis of the terrain model. Breaklines were added around bridges, retaining walls, and other sharp features to improve the accuracy around sudden breaks in the terrain. Breaklines were also added along significant bodies of water to assist with hydro-enforcement. The final terrain dataset was used to generate 1-foot contours. RMSEz = 0.33 feet.

  17. D

    Digital Elevation Models Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Digital Elevation Models Report [Dataset]. https://www.datainsightsmarket.com/reports/digital-elevation-models-1984584
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The booming Digital Elevation Model (DEM) market is projected to reach $2.8 billion by 2033, fueled by LiDAR advancements, satellite imagery accessibility, and smart city initiatives. Explore key trends, market drivers, and leading companies shaping this dynamic sector.

  18. o

    Oregon Digital Elevation Model DEM

    • geohub.oregon.gov
    • data.oregon.gov
    Updated Dec 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2008). Oregon Digital Elevation Model DEM [Dataset]. https://geohub.oregon.gov/documents/b2a1742f015744d2bc619e5e59c00330
    Explore at:
    Dataset updated
    Dec 29, 2008
    Dataset authored and provided by
    State of Oregon
    Area covered
    Description

    This is a dataset download, not a document. The Open button will start the download.Digital Elevation Model. 10m pixels. Elevation values in feet. Elevation data assembled from merged 7.5-minute DEM blocks (10- by 10-m data spacing).

  19. n

    LANDMAP: Satellite Image and and Elevation Maps of the United Kingdom

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). LANDMAP: Satellite Image and and Elevation Maps of the United Kingdom [Dataset]. https://access.earthdata.nasa.gov/collections/C1214611010-SCIOPS
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    [From The Landmap Project: Introduction, "http://www.landmap.ac.uk/background/intro.html"]

     A joint project to provide orthorectified satellite image mosaics of Landsat,
     SPOT and ERS radar data and a high resolution Digital Elevation Model for the
     whole of the UK. These data will be in a form which can easily be merged with
     other data, such as road networks, so that any user can quickly produce a
     precise map of their area of interest.
    
     Predominately aimed at the UK academic and educational sectors these data and
     software are held online at the Manchester University super computer facility
     where users can either process the data remotely or download it to their local
     network.
    
     Please follow the links to the left for more information about the project or
     how to obtain data or access to the radar processing system at MIMAS. Please
     also refer to the MIMAS spatial-side website,
     "http://www.mimas.ac.uk/spatial/", for related remote sensing materials.
    
  20. d

    Data from: Utah FORGE: Geologic, Topographic, and Other Related Maps and GIS...

    • catalog.data.gov
    • gdr.openei.org
    • +3more
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Idaho National Laboratory (2025). Utah FORGE: Geologic, Topographic, and Other Related Maps and GIS Data from the Earth Model [Dataset]. https://catalog.data.gov/dataset/utah-forge-geologic-topographic-and-other-related-maps-and-gis-data-from-the-earth-model-443d4
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    Idaho National Laboratory
    Area covered
    Earth
    Description

    This submission contains a number of maps and shapefiles related to the Utah FORGE site. Examples include geologic maps (several variations) and GIS data for the Utah FORGE site outline. All data are georeferenced to UTM, zone 12N, NAD 83, NAVD 88.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MassGIS - Bureau of Geographic Information (2020). Massachusetts Elevation Finder [Dataset]. https://gis.data.mass.gov/datasets/massachusetts-elevation-finder

Massachusetts Elevation Finder

Explore at:
Dataset updated
Sep 2, 2020
Dataset authored and provided by
MassGIS - Bureau of Geographic Information
Area covered
Massachusetts
Description

With this mapping application, users can click anywhere within the Commonwealth of Massachusetts to find the elevation at that location in both meters and feet. The elevation data digital elevation model (DEM), in integer units, are derived from statewide Lidar (2013-2021) Terrain Data. The Vertical Datum of the lidar data used to create the DEM is NAVD88 – Geoid18 (m).

The map displays a tile service that shows the DEM using a custom color ramp along with Lidar-derived shaded relief image. The symbology was created by MassGIS staff in ArcGIS Pro using the 'multiply' layer blending option. At medium and large scales the MassGIS Map Features for Imagery tile layer displays atop the imagery.Click the "i" button in the lower left to view a legend.This application is hosted by MassGIS at ArcGIS Online.

Search
Clear search
Close search
Google apps
Main menu