Reference Layer: Bureau of Labor Statistics Monthly Unemployment (latest 14 months)_This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values.The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: August 2022 (preliminary values at the county level)The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: October 21, 2022Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and CountyNationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS's county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2021 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova.To better understand the different labor force statistics included in this map, see the diagram below from BLS:
This layer shows full-time, year-round vs. part-time employment by age. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 65+ who worked in the past 12 months. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B23027 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD) to show change in job characteristics over time, including total number of jobs, worker age, sectors and earnings, from 2010-2019, by various geographies for the state of Georgia.Data manifest: https://opendata.atlantaregional.com/datasets/employment-and-job-flows-2010-2019-manifest/explore
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Employment Rate and Labor Force Participation. From ACS Table B23025. 5yr ACS 2007-11, By Tract, State of Michigan. Table joined to 2010 TiGER census tracts.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This feature set contains jobs and employment projections from Projections 2040 for the San Francisco Bay Region. This forecast represents job and employment projections resulting from Plan Bay Area 2040. Numbers are provided by county. Jobs and employment numbers are included for 2010 (two versions), 2015, 2020, 2025, 2030, 2035, and 2040. For 2010, two data points are provided:A tabulation (base year A) from the 2010 model simulation (base year A); and(Preferred) A tabulation (base year B) from the 2010 pre-run microdata, designed to approximate (but may still differ from) Census 2010 counts.Projection data is included for:Agriculture and natural resources jobsFinancial and professional service jobsHealth, educational, and recreational service jobsManufacturing, wholesale, and transportation jobsInformation, government, and construction jobsRetail jobsTotal jobsEmployed residentsThis feature set was assembled using unclipped county features. For those who prefer Projections 2040 data using county features with ocean and bay waters clipped out, the data in this feature service can be joined to San Francisco Bay Region Counties (clipped).Other Projections 2040 feature sets:Households and population per countyHouseholds and population per jurisdiction (incorporated place and unincorporated county)Households and population per Census TractJobs and employment per jurisdiction (incorporated place and unincorporated county)Jobs per Census TractFemale population, by age range, per countyFemale population, by age range, per jurisdiction (incorporated place and unincorporated county)Male population, by age range, per countyMale population, by age range, per jurisdiction (incorporated place and unincorporated county)Total population, by age range, per countyTotal population, by age range, per jurisdiction (incorporated place and unincorporated county)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD) to show change in job characteristics over time, including total number of jobs, worker age, sectors and earnings, from 2010-2017, by Georgia Senate for the state of Georgia.The manifest of the data is available here.
Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.
These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.
Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.
As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.
Wasatch Front Real Estate Market Model (REMM) Projections
WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:
Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
‘Traffic Analysis Zone’ Projections
The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).
‘City Area’ Projections
The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.
Summary Variables in the Datasets
Annual projection counts are available for the following variables (please read Key Exclusions note below):
Demographics
Household Population Count (excludes persons living in group quarters)
Household Count (excludes group quarters)
Employment
Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
Key Exclusions from TAZ and ‘City Area’ Projections
As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Statewide Projections
Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.
description: Dataset featuring the full-time, part-time and seasonal jobs, as well as internships posted on the City's job portal @ https://www.raleighnc.gov/jobs This dataset is updated weekdays by 9am and does not contain past (non-active) postings.; abstract: Dataset featuring the full-time, part-time and seasonal jobs, as well as internships posted on the City's job portal @ https://www.raleighnc.gov/jobs This dataset is updated weekdays by 9am and does not contain past (non-active) postings.
As a part of DVRPC’s long-range planning activities, the Commission is required to maintain forecasts with at least a 20-year horizon, or to the horizon year of the long-range plan. Allocation of growth is forecasted using a land use model, UrbanSim, and working closely with member county planning staffs. DVRPC has prepared regional, county, and municipal-level population and employment forecasts in five-year increments through 2050, using 2015 Census population estimates and 2015 National Establishments Time Series (NETS) employment data as the base. A forthcoming Analytical Data Report will document the forecasting process and methodologies. While the forecast is not adopted at the transportation analysis zone (TAZ) level, it is allocated to these zones for use in DVRPC’s travel demand model and conforms to municipal/district level adopted totals. This data provides TAZ-level population and employment. Other travel model attributes are available upon request. Note: while 2019 land use model results are provided, the forecast was only adopted for 2015, 2020, 2025, 2030, 2035, 2040, 2045, and 2050.
Tabular data that powers basic monitoring dashboards for the total population, housing and jobs for the City of Seattle. Each record represents the totals for each year since 2000 (and 1995) through the most recently available data. Includes the change from the previous year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Employment, Commuting, Occupation, Income, Health Insurance, Poverty, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP03. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD) to show change in job characteristics over time, including total number of jobs, worker age, sectors and earnings, from 2010-2017, by city for the state of Georgia.The manifest of the data is available here.
The American Community Survey (ACS) 5 Year 2016-2020 socioeconomic estimate data is a subset of information derived from the following census tables: B08013 - Aggregate Travel Time To Work Of Workers By Sex;B08303 - Travel Time To Work;B17019 - Poverty Status In The Past 12 Months Of Families By Household Type By Tenure;B17021 - Poverty Status Of Individuals In The Past 12 Months By Living Arrangement;B19001 - Household Income In The Past 12 Months;B19013 - Median Household Income In The Past 12 Months;B19025 - Aggregate Household Income In The Past 12 Months;B19113 - Median Family Income In The Past 12 Months;B19202 - Median Non-family Household Income In The Past 12 Months;B23001 - Sex By Age By Employment Status For The Population 16 Years And Over;B25014 - Tenure By Occupants Per Room;B25026 - Total Population in Occupied Housing Units by Tenure by year Householder Moved into Unit;B25106 - Tenure By Housing Costs As A Percentage Of Household Income In The Past 12 Months;C24010 - Sex By Occupation For The Civilian Employed Population 16 Years And Over;B20004 - Median Earnings In the Past 12 Months (In 2015 Inflation-Adjusted Dollars) by Sex by Educational Attainment for the Population 25 Years and Over;B23006 - Educational Attainment by Employment Status for the Population 25 to 64 Years, and;B24021 - Occupation By Median Earnings In The Past 12 Months (In 2015 Inflation-Adjusted Dollars) For The Full-Time, Year-Round Civilian Employed Population 16 Years And Over.To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs , for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Socioeconomic Estimate Data by Place Date of Coverage: 2016-2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD) to show change in job characteristics over time, including total number of jobs, worker age, sectors and earnings, from 2010-2017, of State of Georgia.The manifest of the data is available here.
The American Community Survey (ACS) 5 Year 2016-2020 socioeconomic estimate data is a subset of information derived from the following census tables:B08013 - Aggregate Travel Time To Work Of Workers By Sex;B08303 - Travel Time To Work;B17019 - Poverty Status In The Past 12 Months Of Families By Household Type By Tenure;B17021 - Poverty Status Of Individuals In The Past 12 Months By Living Arrangement;B19001 - Household Income In The Past 12 Months;B19013 - Median Household Income In The Past 12 Months;B19025 - Aggregate Household Income In The Past 12 Months;B19113 - Median Family Income In The Past 12 Months;B19202 - Median Non-family Household Income In The Past 12 Months;B23001 - Sex By Age By Employment Status For The Population 16 Years And Over;B25014 - Tenure By Occupants Per Room;B25026 - Total Population in Occupied Housing Units by Tenure by year Householder Moved into Unit;B25106 - Tenure By Housing Costs As A Percentage Of Household Income In The Past 12 Months;C24010 - Sex By Occupation For The Civilian Employed Population 16 Years And Over;B20004 - Median Earnings In the Past 12 Months (In 2015 Inflation-Adjusted Dollars) by Sex by Educational Attainment for the Population 25 Years and Over;B23006 - Educational Attainment by Employment Status for the Population 25 to 64 Years, and;B24021 - Occupation By Median Earnings In The Past 12 Months (In 2015 Inflation-Adjusted Dollars) For The Full-Time, Year-Round Civilian Employed Population 16 Years And Over.
To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Socioeconomic Estimate Data by CountyDate of Coverage: 2016-2020
Employment and wages data for all locations, 2001 to 2016. Note on use for analysis: This data set mixes scale. It includes rows for census areas and economic regions, which contain multiple CDP's and cities from this same data set in many cases. To view this data by year and by borough, economic region, or city, add 'Employment and Wages Group Layers' to a WebMap or to the Build Your Own Map application. Contact dcraresearchandanalysis@alaska.gov with questions.Source: Alaska Department of Labor and Workforce Development.This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Local and Regional Information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Mills reported 34K in Employees for its fiscal year ending in May of 2024. Data for General Mills | GIS - Employees Total Number including historical, tables and charts were last updated by Trading Economics this last July in 2025.
As a part of DVRPC’s long-range planning activities, the Commission is required to maintain forecasts with at least a 20-year horizon. DVRPC has updated forecasts through the horizon year of the 2050 Long-Range Plan. The 2050 Version 2.0 Population and Employment Forecasts (2050 Version 2.0, v2.0) were adopted by the DVRPC Board on October 24, 2024, They update the 2050 v1.0 forecasts with a new county-level age-cohort model and new base data from the 2020 Decennial Census, 2020 Bureau of Economic Analysis (BEA), and 2021 National Establishments Time Series (NETS). The age-cohort model calculates future population for five year age-sex cohorts using the 2020 Census base population, and anticipated birth, death, and migration rates. These anticipated rates were developed using historic birth and death records from New Jersey and Pennsylvania state health department data, as well as historic net migration data, calculated from decennial census data. Employment forecasts were developed by multiplying population forecasts by a ratio of working age population to jobs, calculated from 2022 ACS and BEA data.The municipal and TAZ forecasts use the growth factors from the v1.0 forecasts, scaled to the new county and regional population totals from the age-cohort model. While the forecast is not adopted at the transportation analysis zone (TAZ) level, it is allocated to these zones for use in DVRPC’s travel demand model, and conforms to municipal/district level adopted totals. This data provides TAZ-level population and employment. Other travel model attributes are available upon request. DVRPC has prepared regional- and county-level population and employment forecasts in five-year increments for years 2020–2050. 2019 land use model results are also available. A forthcoming Analytical Data Report will document the forecasting process and methodologies.
Reference Layer: Bureau of Labor Statistics Monthly Unemployment (latest 14 months)_This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values.The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: August 2022 (preliminary values at the county level)The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: October 21, 2022Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and CountyNationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS's county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2021 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova.To better understand the different labor force statistics included in this map, see the diagram below from BLS: