100+ datasets found
  1. Digital Environmental Geologic-GIS Map for San Antonio Missions National...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas (NPS, GRD, GRI, SAAN, SAAN_environmental digital map) adapted from a Texas Bureau of Economic Geology, University of Texas at Austin unpublished map by the Texas Bureau of Economic Geology (1985) [Dataset]. https://catalog.data.gov/dataset/digital-environmental-geologic-gis-map-for-san-antonio-missions-national-historical-park-a
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Austin, San Antonio, Texas
    Description

    The Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saan_environmental_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saan_environmental_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saan_environmental_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (saan_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saan_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saan_environmental_geology_metadata_faq.pdf). Please read the saan_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saan_environmental_geology_metadata.txt or saan_environmental_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). Purpose:

  2. ESI GIS Data and PDF Maps: Environmental Sensitivity Index including GIS...

    • fisheries.noaa.gov
    • catalog.data.gov
    • +1more
    Updated Jan 1, 1984
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Response and Restoration (1984). ESI GIS Data and PDF Maps: Environmental Sensitivity Index including GIS Data and Maps (for the U.S. Shorelines, including Alaska, Hawaii, and Puerto Rico) [Dataset]. https://www.fisheries.noaa.gov/inport/item/40691
    Explore at:
    shapefile, pdf - adobe portable document formatAvailable download formats
    Dataset updated
    Jan 1, 1984
    Dataset provided by
    Office of Response and Restoration
    Time period covered
    1984 - 2007
    Area covered
    United States, Golfo de Fonseca (Honduras and Nicaragua), Puerto Rican shoreline, American Samoa,
    Description

    Environmental Sensitivity Index (ESI) maps are an integral component in oil-spill contingency planning and assessment. They serve as a source of information in the event of an oil spill incident. ESI maps are a product of the Hazardous Materials Response Division of the Office of Response and Restoration (OR&R).ESI maps contain three types of information: shoreline habitats (classified accordin...

  3. Environmental Enforcement Districts

    • gis-vtanr.hub.arcgis.com
    • anrgeodata.vermont.gov
    • +7more
    Updated Dec 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vermont Agency of Natural Resources (2008). Environmental Enforcement Districts [Dataset]. https://gis-vtanr.hub.arcgis.com/datasets/VTANR::environmental-enforcement-districts/about
    Explore at:
    Dataset updated
    Dec 29, 2008
    Dataset provided by
    Vermont Agency Of Natural Resourceshttp://www.anr.state.vt.us/
    Authors
    Vermont Agency of Natural Resources
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    Current statewide map of the geographic territories of Environmental Enforcement Officers. Part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes feature classes for ACT 250, Environmental Enforcement, Fisheries, Forestry, Lieutennant Chief Warden, Park, Solid Waste, Warden, Watershed Planning, Wastewater, Wildlife, Wildlife Management Units, River Management Engineering Districts, and Tactical Planning Basin.

  4. d

    Environmental Sensitivity Index (ESI) Threatened and Endangered Species GIS...

    • catalog.data.gov
    • cloudcity.ogopendata.com
    • +4more
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2024). Environmental Sensitivity Index (ESI) Threatened and Endangered Species GIS Services [Dataset]. https://catalog.data.gov/dataset/environmental-sensitivity-index-esi-threatened-and-endangered-species-gis-services1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    Environmental Sensitivity Index (ESI) data characterize the marine and coastal environments and wildlife based on sensitivity to spilled oil. Coastal species that are listed as threatened, endangered, or as a species of concern, by either federal or state governments, are a primary focus. A subset of the ESI data, the ESI Threatened and Endangered Species (T&E) databases focus strictly on these species. Species are mapped individually. In addition to showing spatial extent, each species polygon, point, or line has attributes describing abundance, seasonality, threatened/endangered status, and life history. Both the state and federal status is provided, along with the year the ESI data were published. This is important, as the status of a species can vary over time. As always, the ESI data are a snapshot in time. The biology layers focus on threatened/endangered status, areas of high concentration, and areas where sensitive life stages may occur. Supporting data tables provide species-/location-specific abundance, seasonality, status, life history, and source information. Human-use resources mapped include managed areas (parks, refuges, critical habitats, etc.) and resources that may be impacted by oiling and/or cleanup, such as beaches, archaeological sites, marinas, etc. ESIs are available for the majority of the US coastline, as well as the US territories. ESI data are available as PDF maps, as well as in a variety of GIS formats. For more information, go to http://response.restoration.noaa.gov/esi . To download complete ESI data sets, go to http://response.restoration.noaa.gov/esi_download .

  5. D

    Geographic Information System Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Market Outlook



    The global Geographic Information System (GIS) market size was valued at approximately USD 8.1 billion in 2023 and is projected to reach around USD 16.3 billion by 2032, growing at a CAGR of 8.2% during the forecast period. One of the key growth factors driving this market is the increasing adoption of GIS technology across various industries such as agriculture, construction, and transportation, which is enhancing operational efficiencies and enabling better decision-making capabilities.



    Several factors are contributing to the robust growth of the GIS market. Firstly, the increasing need for spatial data in urban planning, infrastructure development, and natural resource management is accelerating the demand for GIS solutions. For instance, governments and municipalities globally are increasingly relying on GIS for planning and managing urban sprawl, transportation systems, and utility networks. This growing reliance on spatial data for efficient resource allocation and policy-making is significantly propelling the GIS market.



    Secondly, the advent of advanced technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and machine learning is enhancing the capabilities of GIS systems. The integration of these technologies with GIS allows for real-time data analysis and predictive analytics, making GIS solutions more powerful and valuable. For example, AI-powered GIS can predict traffic patterns and help in effective city planning, while IoT-enabled GIS can monitor and manage utilities like water and electricity in real time, thus driving market growth.



    Lastly, the rising focus on disaster management and environmental monitoring is further boosting the GIS market. Natural disasters like floods, hurricanes, and earthquakes necessitate the need for accurate and real-time spatial data to facilitate timely response and mitigation efforts. GIS technology plays a crucial role in disaster risk assessment, emergency response, and recovery planning, thereby increasing its adoption in disaster management agencies. Moreover, environmental monitoring for issues like deforestation, pollution, and climate change is becoming increasingly vital, and GIS is instrumental in tracking and addressing these challenges.



    Regionally, the North American market is expected to hold a significant share due to the widespread adoption of advanced technologies and substantial investments in infrastructure development. Asia Pacific is anticipated to witness the fastest growth, driven by rapid urbanization, industrialization, and supportive government initiatives for smart city projects. Additionally, Europe is expected to show steady growth due to stringent regulations on environmental management and urban planning.



    Component Analysis



    The GIS market by component is segmented into hardware, software, and services. The hardware segment includes devices like GPS, imaging sensors, and other data capture devices. These tools are critical for collecting accurate spatial data, which forms the backbone of GIS solutions. The demand for advanced hardware components is rising, as organizations seek high-precision instruments for data collection. The advent of technologies such as LiDAR and drones has further enhanced the capabilities of GIS hardware, making data collection faster and more accurate.



    In the software segment, GIS platforms and applications are used to store, analyze, and visualize spatial data. GIS software has seen significant advancements, with features like 3D mapping, real-time data integration, and cloud-based collaboration becoming increasingly prevalent. Companies are investing heavily in upgrading their GIS software to leverage these advanced features, thereby driving the growth of the software segment. Open-source GIS software is also gaining traction, providing cost-effective solutions for small and medium enterprises.



    The services segment encompasses various professional services such as consulting, integration, maintenance, and training. As GIS solutions become more complex and sophisticated, the need for specialized services to implement and manage these systems is growing. Consulting services assist organizations in selecting the right GIS solutions and integrating them with existing systems. Maintenance and support services ensure that GIS systems operate efficiently and remain up-to-date with the latest technological advancements. Training services are also crucial, as they help users maximize the potential of GIS technologies.



  6. GIS Data & Maps

    • figshare.com
    bin
    Updated Apr 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JACKSON LORD (2023). GIS Data & Maps [Dataset]. http://doi.org/10.6084/m9.figshare.15152256.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 24, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    JACKSON LORD
    License

    https://www.apache.org/licenses/LICENSE-2.0.htmlhttps://www.apache.org/licenses/LICENSE-2.0.html

    Description

    Data for maps and figures in "Global Potential for Harvesting Drinking Water from Air using Solar Energy" in Nature.

  7. Critical Environmental Area

    • data.gis.ny.gov
    Updated Sep 17, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Environmental Conservation (2013). Critical Environmental Area [Dataset]. https://data.gis.ny.gov/maps/nysdec::critical-environmental-area
    Explore at:
    Dataset updated
    Sep 17, 2013
    Dataset authored and provided by
    New York State Department of Environmental Conservationhttp://www.dec.ny.gov/
    Area covered
    Description

    This data set contains areas that have been designated as Critical Environmental Areas (CEAs) under 6 NYCRR Part 617 - State Environmental Quality Review (SEQR). Local agencies may designate specific geographic areas within their boundaries as a "Critical Environmental Area" (CEA). State agencies may also designate as a CEA a geographic area which they own, manage or regulate. To be designated as a CEA, an area must have an exceptional or unique character which has a benefit or threat to human health, a natural setting (e.g. fish and wildlife habitat, forest and vegetation, open space and areas of important aesthetic or scenic quality), agricultural, social, cultural, historic, archaeological, recreational, or educational values, or an inherent ecological, geological or hydrological sensitivity that may be adversely affected by any change.

  8. a

    Environmental Learning Center

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    • +3more
    Updated Oct 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). Environmental Learning Center [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/environmental-learning-center
    Explore at:
    Dataset updated
    Oct 2, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Description

    Locations Environmental Learning Centers operated by Seattle Parks.Refresh Cycle: WeeklyFeature Class: DPR.EnvEdCtr

  9. T

    GIS dataset

    • dataverse-dev.tdl.org
    bin, tiff
    Updated Oct 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristi Park; Kristi Park (2016). GIS dataset [Dataset]. https://dataverse-dev.tdl.org/dataset.xhtml?persistentId=doi:10.5072/FK2/AZCLXJ
    Explore at:
    tiff(13275561), bin(216), bin(387)Available download formats
    Dataset updated
    Oct 18, 2016
    Dataset provided by
    Texas Data Repository ***DEV*** Dataverse
    Authors
    Kristi Park; Kristi Park
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    GIS dataset with TIFFs and tsw files

  10. Idaho Department of Environmental Quality GIS

    • opengisdata-idahodeq.opendata.arcgis.com
    • gis-idaho.hub.arcgis.com
    • +1more
    Updated Sep 12, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Idaho Department of Environmental Quality GIS (2013). Idaho Department of Environmental Quality GIS [Dataset]. https://opengisdata-idahodeq.opendata.arcgis.com/datasets/idaho-department-of-environmental-quality-gis
    Explore at:
    Dataset updated
    Sep 12, 2013
    Dataset provided by
    Idaho Department of Environmental Qualityhttps://www.deq.idaho.gov/
    Authors
    Idaho Department of Environmental Quality GIS
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Idaho Department of Environmental Quality GISDEQ's MissionTo protect human healthand preserve the quality of Idaho's air, land, and waterfor use and enjoyment today and in the future.DEQ is a state department created by the Idaho Environmental Protection and Health Act to ensure clean air, water, and land in the state and protect Idaho citizens from the adverse health impacts of pollution.As a regulatory agency, DEQ enforces various state environmental regulations and administers a number of federal environmental protection laws including the Clean Air Act, the Clean Water Act, and the Resource Conservation and Recovery Act.The agency is committed to working in partnership with local communities, businesses, and citizens to identify and implement cost-effective environmental solutions.Idaho DEQ GIS Home PageIdaho DEQ GIS HUB Open DataIdaho DEQ Home PageIDEQ ArcGIS Server Mapping ApplicationsFinal 2022 305b Integrated ReportGround Water Quality Monitoring WellsIDEQ 2020 Nitrate Priority AreasIDEQ Source Water Assessment and ProtectionIDEQ Source Water Grant Project Locator Tool

  11. o

    Level III Ecoregions

    • geohub.oregon.gov
    • data.oregon.gov
    • +3more
    Updated Jan 1, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2006). Level III Ecoregions [Dataset]. https://geohub.oregon.gov/datasets/oregon-geo::level-iii-ecoregions
    Explore at:
    Dataset updated
    Jan 1, 2006
    Dataset authored and provided by
    State of Oregon
    Area covered
    Description

    Ecoregions denote areas of general similarity in ecosystems and in the type quality, and quantity of environmental resources. The ecoregions shown here have been derived from the "Level III Ecoregions of the continental United States" GIS coverage created by the US Environmental Protection Agency. The useco polygon was converted to a shapefile in ArcToolbox using the "Feature Class To Shapefile" tool. The shapefile was reprojected from Albers Conical Equal Area to Oregon Lambert. The shapefile was clipped to the boundary of Oregon.

  12. d

    Datasets for Computational Methods and GIS Applications in Social Science

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2025). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  13. a

    53 public environmental GIS base layers for Alaska (Alaska GAP project;...

    • arcticdata.io
    • knb.ecoinformatics.org
    • +1more
    Updated Mar 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska GAP Analysis Project (2021). 53 public environmental GIS base layers for Alaska (Alaska GAP project; ancillary data) [Dataset]. https://arcticdata.io/catalog/view/dcx_58b490f4-5703-4f1f-92a0-79c4e62ce1e1_2
    Explore at:
    Dataset updated
    Mar 5, 2021
    Dataset provided by
    Arctic Data Center
    Authors
    Alaska GAP Analysis Project
    Area covered
    Description

    This public GIS dataset comes from the Alaska GAP project, and it is part of the final project report (Gotthard, Pyare, Huettmann et al. 2013). Here we present a copy of the original data set as a value-added product for basic use and training purposes. It consists of 53 environmental layers for all of Alaska in an ArcGIS 10 format and usually with a pixel size of 60m. These layers were compiled from various sources, and authorships should be fully honoured as stated in the details of this metadata. Output maps were clipped using a state of Alaska coastline in the Alaska Albers NAD83 projection; very small islands are excluded.The data layers were initially compiled for ecological niche models of Alaska's terrestrial biodiversity using Maxent and other Machine Learning algorithms. However, they can also be used for many other purposes, e.g. strategic conservation planning and individual information and assessments. The datasets are a snapshot in space and time (2012) but likely remain valid for years to come. It is appreciated that these data layers are 'living products', and it is hoped that this public data publication here will progress and trigger many updates and data quality improvements for Alaska and its public high-quality data over time. The following variables are included in this dataset: Boundaries Coastline, Climate Precipitation January til December Average monthly precipitation (mm), Climate Precipitation Average annual precipitation (mm), Climate Temperature January til December Average monthly temperature (deg C), Climate Temperature annual temperature (dec C), Climate First day of thaw (Julian date), Climate First day of freeze (Julian date), Climate Length of growing season Number of days, Disturbance Insect history (Year), Distance to Disturbance Insect location (m), Disturbance Fire history Year of fire (1942 til 2007), distance to Disturbance Fire location (m), Soils Grid (category), Surfacial Geology Grid values, Glacial Distance (m), Distance(m) to lotic water, Distance (m) to permafrost boundary, Distance(m) to lentic water, Saltwater Presence, Distance (m) to Sea Ice Extent 2003-2007 December, Distance (m) to Sea Ice Extent 2003-2007 July, Distance to Development Infrastructure, Landcover Vegetation (Landfire), Landcover nlcd60, Elevation (m), Slope (%), Aspect (Degrees from due south), Terrain Ruggedness index, Extent nullgrid 9999, Coast raster.

  14. a

    One hundred seventy environmental GIS data layers for the circumpolar Arctic...

    • arcticdata.io
    • search.dataone.org
    Updated Dec 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arctic Data Center (2020). One hundred seventy environmental GIS data layers for the circumpolar Arctic Ocean region [Dataset]. https://arcticdata.io/catalog/view/f63d0f6c-7d53-46ce-b755-42a368007601
    Explore at:
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Arctic Data Center
    Time period covered
    Jan 1, 1950 - Dec 31, 2100
    Area covered
    Arctic Ocean,
    Description

    This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.

  15. Socio-Environmental Science Investigations Using the Geospatial Curriculum...

    • icpsr.umich.edu
    Updated Oct 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bodzin, Alec M.; Anastasio, David J.; Hammond, Thomas C.; Popejoy, Kate; Holland, Breena (2022). Socio-Environmental Science Investigations Using the Geospatial Curriculum Approach with Web Geospatial Information Systems, Pennsylvania, 2016-2020 [Dataset]. http://doi.org/10.3886/ICPSR38181.v1
    Explore at:
    Dataset updated
    Oct 17, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Bodzin, Alec M.; Anastasio, David J.; Hammond, Thomas C.; Popejoy, Kate; Holland, Breena
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38181/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/terms

    Time period covered
    Sep 1, 2016 - Aug 31, 2020
    Area covered
    Pennsylvania
    Description

    This Innovative Technology Experiences for Students and Teachers (ITEST) project has developed, implemented, and evaluated a series of innovative Socio-Environmental Science Investigations (SESI) using a geospatial curriculum approach. It is targeted for economically disadvantaged 9th grade high school students in Allentown, PA, and involves hands-on geospatial technology to help develop STEM-related skills. SESI focuses on societal issues related to environmental science. These issues are multi-disciplinary, involve decision-making that is based on the analysis of merged scientific and sociological data, and have direct implications for the social agency and equity milieu faced by these and other school students. This project employed a design partnership between Lehigh University natural science, social science, and education professors, high school science and social studies teachers, and STEM professionals in the local community to develop geospatial investigations with Web-based Geographic Information Systems (GIS). These were designed to provide students with geospatial skills, career awareness, and motivation to pursue appropriate education pathways for STEM-related occupations, in addition to building a more geographically and scientifically literate citizenry. The learning activities provide opportunities for students to collaborate, seek evidence, problem-solve, master technology, develop geospatial thinking and reasoning skills, and practice communication skills that are essential for the STEM workplace and beyond. Despite the accelerating growth in geospatial industries and congruence across STEM, few school-based programs integrate geospatial technology within their curricula, and even fewer are designed to promote interest and aspiration in the STEM-related occupations that will maintain American prominence in science and technology. The SESI project is based on a transformative curriculum approach for geospatial learning using Web GIS to develop STEM-related skills and promote STEM-related career interest in students who are traditionally underrepresented in STEM-related fields. This project attends to a significant challenge in STEM education: the recognized deficiency in quality locally-based and relevant high school curriculum for under-represented students that focuses on local social issues related to the environment. Environmental issues have great societal relevance, and because many environmental problems have a disproportionate impact on underrepresented and disadvantaged groups, they provide a compelling subject of study for students from these groups in developing STEM-related skills. Once piloted in the relatively challenging environment of an urban school with many unengaged learners, the results will be readily transferable to any school district to enhance geospatial reasoning skills nationally.

  16. G

    Geographic Information System (GIS) Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Geographic Information System (GIS) Services Report [Dataset]. https://www.archivemarketresearch.com/reports/geographic-information-system-gis-services-55148
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) Services market is experiencing robust growth, driven by increasing adoption across various sectors. While the provided data lacks specific market size figures, based on industry reports and observed trends in related technology sectors, we can estimate a 2025 market size of approximately $15 billion USD. This reflects the significant investments being made in spatial data infrastructure and the growing demand for location-based analytics. Assuming a Compound Annual Growth Rate (CAGR) of 8%, the market is projected to reach roughly $25 billion by 2033. Key drivers include the rising need for precise mapping and location intelligence in environmental management, urban planning, and resource optimization. Furthermore, advancements in cloud-based GIS platforms, the increasing availability of big data, and the development of sophisticated geospatial analytics tools are fueling market expansion. The market is segmented by service type (Analyze, Visualize, Manage, Others) and application (primarily Environmental Agencies, but also extending to various sectors such as utilities, transportation, and healthcare). North America currently holds a significant market share due to early adoption and advanced technological infrastructure. However, regions like Asia-Pacific are demonstrating rapid growth, driven by increasing urbanization and infrastructure development. While the lack of readily available detailed market figures presents a challenge for complete precision in projection, the overall trend points to a considerable expansion of the GIS services sector over the forecast period. The competitive landscape is characterized by a mix of large multinational corporations like Infosys and Intellias and smaller, specialized firms like EnviroScience and R&K Solutions, reflecting the diverse needs of the market. These companies compete based on their technological capabilities, industry expertise, and geographical reach. The ongoing integration of GIS with other technologies, such as artificial intelligence (AI) and machine learning (ML), will further shape the market landscape, creating opportunities for innovation and differentiation. Challenges include the high initial investment costs associated with implementing GIS solutions and the need for skilled professionals to effectively utilize these technologies. However, the long-term benefits of improved decision-making and operational efficiency are driving wider adoption despite these hurdles. The future growth of the GIS services market hinges on the continued development of innovative technologies and the increasing awareness of the value that location-based insights provide across various industries.

  17. PaleoPerm

    • figshare.com
    docx
    Updated Mar 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pavel Sannikov; Lyudmila S Shumilovskikh; Elizaveta Mekhonoshina; Sergei Kopytov (2022). PaleoPerm [Dataset]. http://doi.org/10.6084/m9.figshare.19149824.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 21, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Pavel Sannikov; Lyudmila S Shumilovskikh; Elizaveta Mekhonoshina; Sergei Kopytov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The PaleoPerm database was created on the basis of published studies of the natural history of the of the Perm Kama region. The objects of the database are paleoarchives (peatlands, lacustrine, alluvial, cover, cultural, polygenetic sediments) of the Late Pleistocene and Holocene age.

    The database contains information about the location of paleoarchives in the WGS84 coordinate system. For each object, a set of data is provided on its name, study area, geographical and morphometric characteristics, information on dating, and a set of analyzes (proxy-data) performed. In total, more than 20 parameters. For each paleoarchive, links to the original source of the study data are also indicated.

    The database can be visualized using geographic information systems. It is intended for specialists in the field of paleogeography, paleoecology, Quaternary geology, archeology and all those interested in the natural history of the region.

    The information is systematized in the form of two files: "Таблица.xlsx" and "PaleoPerm.shp". As additional materials, the "Описание и инструкция по использованию.docx", "Карточка палеоархива.docx" (for further replenishment of the database) and "Библиографический список публикаций.docx" are attached to the database.

  18. a

    Environmental Burdens

    • egis-lacounty.hub.arcgis.com
    • data.lacounty.gov
    • +3more
    Updated Dec 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2022). Environmental Burdens [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/lacounty::park-needs-assessment-plus-gis-layers?layer=28
    Explore at:
    Dataset updated
    Dec 22, 2022
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Attribute names and descriptions are as follows:

    • GroundwaterThreats Pctl - HPI groundwater threats percentile ranking

    • Value_Groundwater - Groundwater threat metric score

    • Haz_Waste_Pctl - HPI hazardous waste percentile ranking

    • Value_HazWaste - Hazardous waste metric score

    • Drinking Water pctl - HPI drinking water contamination percentile ranking

    • Value_Drinking - Drinking water contamination metric score

    • PM 2.5 Pctl - HPI PM2.5 percentile ranking

    • Value_PM25 - PM2.5 metric score

    • PollutionBurden Pctl - HPI pollution burden percentile ranking

    • Value_Pollution - Pollution burden metric score

    • Value_Comp - Summed metric score for all environmental burdens

    • ShapeLength - Length of the perimeter of the feature in square feet

    • ShapeArea - Length of the area of the feature in square feet


    DISCLAIMER: The data herein is for informational purposes, and may not have been prepared for or be suitable for legal, engineering, or surveying intents. The County of Los Angeles reserves the right to change, restrict, or discontinue access at any time. All users of the maps and data presented on https://lacounty.maps.arcgis.com or deriving from any LA County REST URLs agree to the "Terms of Use" outlined on the County of LA Enterprise GIS (eGIS) Hub (https://egis-lacounty.hub.arcgis.com/pages/terms-of-use).
  19. c

    Areas of Critical Environmental Concern - BLM [ds2631] GIS Dataset

    • map.dfg.ca.gov
    Updated Dec 5, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Areas of Critical Environmental Concern - BLM [ds2631] GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds2631.html
    Explore at:
    Dataset updated
    Dec 5, 2014
    Description

    CDFW BIOS GIS Dataset, Contact: California State Office Mapping Sciences, Description: This dataset describes the geographic boundaries of the ACEC within the BLM managed public lands in California. The designated ACECs are "areas within the public lands where special management attention is required to protect and prevent irreparable damage to important historic, cultural, or scenic values, fish and wildlife resources or other natural systems of processes, or to protect life and safety from natural hazards."

  20. Tropical deforestation - Environmental Science GeoInquiries

    • hub.arcgis.com
    • geoinquiries-education.hub.arcgis.com
    Updated May 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2016). Tropical deforestation - Environmental Science GeoInquiries [Dataset]. https://hub.arcgis.com/maps/da0653f60ebe4ee296ad06937bbabf27
    Explore at:
    Dataset updated
    May 10, 2016
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    Description

    Proof web map for GeoInquiries Advanced Environmental Science lesson on Tropical Deforestation.THE ADVANCED ENVIRONMENTAL SCIENCE AND BIOLOGY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for high school biology education are now freely available.The Advanced Environmental Science and Biology GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards. Activity topics include:• Population dynamics • Megacities • Down to the last drop • Dead zones (water pollution) • The Beagle’s Path • Primary productivity • Tropical Deforestation • Marine debris • El Nino (and climate) • Slowing malaria • Altered biomes • Spinning up wind power • Resource consumption and wealthTeachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2025). Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas (NPS, GRD, GRI, SAAN, SAAN_environmental digital map) adapted from a Texas Bureau of Economic Geology, University of Texas at Austin unpublished map by the Texas Bureau of Economic Geology (1985) [Dataset]. https://catalog.data.gov/dataset/digital-environmental-geologic-gis-map-for-san-antonio-missions-national-historical-park-a
Organization logo

Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas (NPS, GRD, GRI, SAAN, SAAN_environmental digital map) adapted from a Texas Bureau of Economic Geology, University of Texas at Austin unpublished map by the Texas Bureau of Economic Geology (1985)

Explore at:
Dataset updated
Nov 25, 2025
Dataset provided by
National Park Servicehttp://www.nps.gov/
Area covered
Austin, San Antonio, Texas
Description

The Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saan_environmental_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saan_environmental_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saan_environmental_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (saan_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saan_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saan_environmental_geology_metadata_faq.pdf). Please read the saan_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saan_environmental_geology_metadata.txt or saan_environmental_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). Purpose:

Search
Clear search
Close search
Google apps
Main menu