100+ datasets found
  1. a

    NG9-1-1 GIS Recommendations - Part 6 - What's Next

    • hub.arcgis.com
    • vgin.vdem.virginia.gov
    Updated Feb 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2021). NG9-1-1 GIS Recommendations - Part 6 - What's Next [Dataset]. https://hub.arcgis.com/documents/b40712f1219d437bb31b2df9fec435bb
    Explore at:
    Dataset updated
    Feb 4, 2021
    Dataset authored and provided by
    Virginia Geographic Information Network
    Description

    The GIS component of Virginia's NG9-1-1 deployments is moving in waves, with new groups of localities starting the onboarding process every three months. Well into our third wave, new resources and recommendations on GIS related topics are now available on the VGIN 9-1-1 & GIS page. This is available as a large combined document, Next Generation 9-1-1 GIS Recommendations. However since some information is more useful for localities earlier in their project and other information more useful later, we are also posting each section as its own document. The parts include:1) Boundaries in Next Generation 9-1-12) Preparing Your Data and Provisioning into EGDMS3) Outsourced GIS Data Maintenance and NG9-1-14) Emergency Service Boundary Layers5) Attribution6) What's NextSome of the parts are technical that reflect choices and options to make with boundary lines, or specific recommendations on how to create globally unique IDs or format display name fields. In these areas, we hope to share recommendations from Intrado and point users to specific portions of the NENA GIS Data Model Standard for examples. The current version is 1.1, published February 2021.

  2. Cloud GIS Market by End-user and Geography - Forecast and Analysis 2021-2025...

    • technavio.com
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2021). Cloud GIS Market by End-user and Geography - Forecast and Analysis 2021-2025 [Dataset]. https://www.technavio.com/report/cloud-gis-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2021 - 2025
    Description

    Snapshot img

    The cloud gis market size will grow up to $ 690.39 mn at a CAGR of 14% during 2021-2025.

    This cloud gis market analysis report entails exhaustive statistical qualitative and quantitative data on End-user (Government, Public safety, Transportation, Business, and Others) and Geography (North America, APAC, Europe, MEA, and South America) and their contribution to the target market. View our sample report to gather market insights on the segmentations. Furthermore, with the latest key findings on the post COVID-19 impact on the market, available in this report, you can create successful business strategies to generate new sales opportunities.

    What will the Cloud GIS Market Size be in 2021?

    Browse TOC and LoE with selected illustrations and example pages of Cloud GIS Market

    Get Your FREE Sample Now!

    Cloud GIS Market: Key Drivers and Trends

    According to our research output, there has been a neutral impact on the market growth post COVID-19 era. Key drivers such as the rising popularity of cloud gis due to ease in data accessibility are notably supporting the cloud gis market growth. On the other hand, factors such as threat of security have been identified as market challenges that limit the growth of market vendors. This report offers detailed insights on the challenges to stay prepared for the obstacles in the future, which will help companies analyze and develop growth strategies.

    This post-pandemic cloud gis market report has assessed the shift in consumer behavior and identified trends and drivers that will help market players outmaneuver challenges. Technology innovations, implementation, and improvisation scope identified in the cloud gis market trends is essential for building new business opportunities across segmentations and geographies.

    Who are the Major Cloud GIS Market Vendors?

    The cloud gis market forecast report provides insights on complete key vendor profiles and their business strategies to reimage themselves. The profiles covered in the report are as follows:

    AmigoCloud Inc. Blue Marble Geographics Caliper Corp. Computer Aided Development Corp. Ltd. Environmental Systems Research Institute Inc. GIS Cloud Ltd. HERE Global BV Hexagon AB Mapbox Inc. Pitney Bowes Inc.

    The cloud gis market is fragmented and the vendors are deploying various organic and inorganic growth strategies to compete in the market. Click here to uncover other successful business strategies deployed by the vendors.

    Furthermore, our research experts have outlined the magnitude of the economic impact on each segment and recovery expectations post pandemic. To recover from post COVID-19 impact, market vendors should create strategies to grab business opportunities from the fast-growing segments, while refining their scope of growth in the slow-growing ones.

    For insights on complete key vendor profiles, download a free sample of the cloud gis market forecast report. The profiles include information on the production, sustainability, and prospects of the leading companies. The report's vendor landscape section also provides industry risk assessment in terms of labor cost, raw material price fluctuation, and other parameters, which is crucial for effective business planning.

    Which are the Key Regions for Cloud GIS Market?

    For more insights on the market share of various regions Request for a FREE sample now!

    The cloud gis market size, share, & trends analysis report offers an up-to-date study of the geographical composition of the market. 40% of the market’s growth will originate from North America during the forecast period. US, China, Japan, Germany, and Canada are the key markets for cloud gis market in North America.

    North America has been recording significant growth rate and is expected to offer several growth opportunities to market vendors during the forecast period. Easy distribution of data has been identified as one of the chief factors that will drive the cloud gis market growth in North America over the forecast period. To garner further competitive intelligence and regional opportunities in store for vendors, view our sample report.

    What are the Revenue-generating End-user Segments in the Cloud GIS Market?

    To gain further insights on the market contribution of various segments Request for a FREE sample!

    The cloud gis market share growth by the _ segment has been significant. The cloud gis market report provides comprehensive understanding of the subsegments of the target market to identify niche customer groups and demographic requirements. Furthermore, the report provides insights on the impact of COVID-19 on market segments, which can be used to deduce transformation patterns in consumer behavior in the coming years and improvise business plans.

    This report provides an accurate prediction of the contribution of all the segments to the growth of the cloud gis market size

  3. EGLE GIS Example -- LIDAR Swipe

    • learn-egle.hub.arcgis.com
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan Dept. of Environment, Great Lakes, and Energy (2023). EGLE GIS Example -- LIDAR Swipe [Dataset]. https://learn-egle.hub.arcgis.com/datasets/egle-gis-example-lidar-swipe
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Michigan Department of Environment, Great Lakes, and Energyhttp://michigan.gov/egle/
    Authors
    Michigan Dept. of Environment, Great Lakes, and Energy
    Description

    Water underneath the ground is important and EGLE staff use GIS to help protect it. Use the "Swipe" tool here to compare and contrast two maps. On the left is regular aerial imagery. On the right you can see even more about the landscape using geospatial analyses! This additional information is important for staff to know about when protecting Michigan's groundwater.This example is embedded into the MI EnviroLearning Hub. If you have any questions about the content within this story map, please contact EGLE-Maps@Michigan.gov.

  4. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  5. d

    California State Waters Map Series--Point Sur to Point Arguello Web Services...

    • catalog.data.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Point Sur to Point Arguello Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-sur-to-point-arguello-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Point Arguello
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.

  6. n

    InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/interagencyfireperimeterhistory-all-years-view
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Historical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email

  7. C

    GIS Final Project

    • data.cityofchicago.org
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chicago Police Department (2025). GIS Final Project [Dataset]. https://data.cityofchicago.org/Public-Safety/GIS-Final-Project/8n2i-4jmi
    Explore at:
    application/rdfxml, csv, tsv, xml, application/rssxml, kmz, application/geo+json, kmlAvailable download formats
    Dataset updated
    Jun 8, 2025
    Authors
    Chicago Police Department
    Description

    This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e

  8. C

    DOMI Street Closures For GIS Mapping

    • data.wprdc.org
    csv, html
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Pittsburgh (2025). DOMI Street Closures For GIS Mapping [Dataset]. https://data.wprdc.org/dataset/street-closures
    Explore at:
    csv, htmlAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset provided by
    City of Pittsburgh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    This dataset contains all DOMI Street Closure Permit data in the Computronix (CX) system from the date of its adoption (in May 2020) until the present. The data in each record can be used to determine when street closures are occurring, who is requesting these closures, why the closure is being requested, and for mapping the closures themselves. It is updated hourly (as of March 2024).

    Preprocessing/Formatting

    It is important to distinguish between a permit, a permit's street closure(s), and the roadway segments that are referenced to that closure(s).

    • The CX system identifies a street in segments of roadway. (As an example, the CX system could divide Maple Street into multiple segments.)

    • A single street closure may span multiple segments of a street.

    • The street closure permit refers to all the component line segments.

    • A permit may have multiple streets which are closed. Street closure permits often reference many segments of roadway.

    The roadway_id field is a unique GIS line segment representing the aforementioned segments of road. The roadway_id values are assigned internally by the CX system and are unlikely to be known by the permit applicant. A section of roadway may have multiple permits issued over its lifespan. Therefore, a given roadway_id value may appear in multiple permits.

    The field closure_id represents a unique ID for each closure, and permit_id uniquely identifies each permit. This is in contrast to the aforementioned roadway_id field which, again, is a unique ID only for the roadway segments.

    City teams that use this data requested that each segment of each street closure permit be represented as a unique row in the dataset. Thus, a street closure permit that refers to three segments of roadway would be represented as three rows in the table. Aside from the roadway_id field, most other data from that permit pertains equally to those three rows. Thus, the values in most fields of the three records are identical.

    Each row has the fields segment_num and total_segments which detail the relationship of each record, and its corresponding permit, according to street segment. The above example produced three records for a single permit. In this case, total_segments would equal 3 for each record. Each of those records would have a unique value between 1 and 3.

    The geometry field consists of string values of lat/long coordinates, which can be used to map the street segments.

    All string text (most fields) were converted to UPPERCASE data. Most of the data are manually entered and often contain non-uniform formatting. While several solutions for cleaning the data exist, text were transformed to UPPERCASE to provide some degree of regularization. Beyond that, it is recommended that the user carefully think through cleaning any unstructured data, as there are many nuances to consider. Future improvements to this ETL pipeline may approach this problem with a more sophisticated technique.

    Known Uses

    These data are used by DOMI to track the status of street closures (and associated permits).

    Further Documentation and Resources

    An archived dataset containing historical street closure records (from before May of 2020) for the City of Pittsburgh may be found here: https://data.wprdc.org/dataset/right-of-way-permits

  9. d

    GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-gis-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Nigeria, Kenya, Egypt, United Arab Emirates, Philippines, Taiwan, Saudi Arabia, Thailand, United States of America, Malaysia
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live includes:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  10. e

    GIS vector data for sample locations and plots associated with the Hillslope...

    • portal.edirepository.org
    kml, zip
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrence Band (2016). GIS vector data for sample locations and plots associated with the Hillslope Study in Macon County, NC [Dataset]. http://doi.org/10.6073/pasta/7229e742973a9da49e27fa43fd21f977
    Explore at:
    zip(not specified kb), kmlAvailable download formats
    Dataset updated
    2016
    Dataset provided by
    EDI
    Authors
    Lawrence Band
    Time period covered
    Nov 14, 2013 - Sep 20, 2016
    Description

    The Hillslope Study sites represent a gradient of landscapes, including forested, valley agriculture, and mountain housing developments. These locations and plots were used to collect samples of various matrices for numerous analyses at differing intervals. The data set consists of Open Office spreadsheet and other files that document all the Hillslope Study locations.

  11. GIS Program Hub Example

    • geospatial-knowledge-prof-services.hub.arcgis.com
    Updated Sep 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Professional Services (2022). GIS Program Hub Example [Dataset]. https://geospatial-knowledge-prof-services.hub.arcgis.com/content/c99f335b948141d18595d5ff6ec6047a
    Explore at:
    Dataset updated
    Sep 23, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Professional Services
    Description

    Create your own initiative by combining existing applications with a custom site. Use this initiative to form teams around a problem and invite your community to participate.

  12. M

    Metro Regional Parcel Dataset - (Updated Quarterly)

    • gisdata.mn.gov
    ags_mapserver, fgdb +4
    Updated Apr 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MetroGIS (2025). Metro Regional Parcel Dataset - (Updated Quarterly) [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metrogis-plan-regional-parcels
    Explore at:
    fgdb, gpkg, html, shp, jpeg, ags_mapserverAvailable download formats
    Dataset updated
    Apr 19, 2025
    Dataset provided by
    MetroGIS
    Description

    This dataset includes all 7 metro counties that have made their parcel data freely available without a license or fees.

    This dataset is a compilation of tax parcel polygon and point layers assembled into a common coordinate system from Twin Cities, Minnesota metropolitan area counties. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.

    NOTICE: The standard set of attributes changed to the MN Parcel Data Transfer Standard on 1/1/2019.
    https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html

    See section 5 of the metadata for an attribute summary.

    Detailed information about the attributes can be found in the Metro Regional Parcel Attributes document.

    The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties have polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. One primary example of this is the condominium, though some counties stacked polygons for condos. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.

    The polygon layer is broken into individual county shape files. The points layer is provided as both individual county files and as one file for the entire metro area.

    In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.

    This is a MetroGIS Regionally Endorsed dataset.

    Additional information may be available from each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person at each individual county.

    Anoka = http://www.anokacounty.us/315/GIS
    Caver = http://www.co.carver.mn.us/GIS
    Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx
    Hennepin = https://gis-hennepin.hub.arcgis.com/pages/open-data
    Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data
    Scott = http://opendata.gis.co.scott.mn.us/
    Washington: http://www.co.washington.mn.us/index.aspx?NID=1606

  13. D

    Atolls of France: geospatial vector data (MCRMP project)

    • dataverse.ird.fr
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serge Andréfouët; Serge Andréfouët (2023). Atolls of France: geospatial vector data (MCRMP project) [Dataset]. http://doi.org/10.23708/LHTEVZ
    Explore at:
    application/zipped-shapefile(314981), application/zipped-shapefile(319150), application/zipped-shapefile(16957), application/zipped-shapefile(34377), application/zipped-shapefile(145542), application/zipped-shapefile(12969324), application/zipped-shapefile(1049821), application/zipped-shapefile(2979211), txt(1819)Available download formats
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    DataSuds
    Authors
    Serge Andréfouët; Serge Andréfouët
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZ

    Area covered
    France, New Caledonia, Wallis and Futuna, French Polynesia
    Dataset funded by
    NASA (2001-2007)
    IRD (2003-present)
    Description

    The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 102 atolls of France (in the Pacific and Indian Oceans) as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).

  14. d

    GIS data and scripts for Colorado Legacy Mine Lands Watershed Delineation...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). GIS data and scripts for Colorado Legacy Mine Lands Watershed Delineation and Scoring tool (WaDeS) [Dataset]. https://catalog.data.gov/dataset/gis-data-and-scripts-for-colorado-legacy-mine-lands-watershed-delineation-and-scoring-tool
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Colorado
    Description

    This data release includes GIS datasets supporting the Colorado Legacy Mine Lands Watershed Delineation and Scoring tool (WaDeS), a web mapping application available at https://geonarrative.usgs.gov/colmlwades/. Water chemistry data were compiled from the U.S. Geological Survey (USGS) National Water Information System (NWIS), U.S. Environmental Protection Agency (EPA) STORET database, and the USGS Central Colorado Assessment Project (CCAP) (Church and others, 2009). The CCAP study area was used for this application. Samples were summarized at each monitoring station and hardness-dependent chronic and acute toxicity thresholds for aquatic life protections under Colorado Regulation No. 31 (CDPHE, 5 CCR 1002-31) for cadmium, copper, lead, and/or zinc were calculated. Samples were scored according to how metal concentrations compared with acute and chronic toxicity thresholds. The results were used in combination with remote sensing derived hydrothermal alteration (Rockwell and Bonham, 2017) and mine-related features (Horton and San Juan, 2016) to identify potential mine remediation sites within the headwaters of the central Colorado mineral belt. Headwaters were defined by watersheds delineated from a 10-meter digital elevation dataset (DEM), ranging in 5-35 square kilometers in size. Python and R scripts used to derive these products are included with this data release as documentation of the processing steps and to enable users to adapt the methods for their own applications. References Church, S.E., San Juan, C.A., Fey, D.L., Schmidt, T.S., Klein, T.L. DeWitt, E.H., Wanty, R.B., Verplanck, P.L., Mitchell, K.A., Adams, M.G., Choate, L.M., Todorov, T.I., Rockwell, B.W., McEachron, Luke, and Anthony, M.W., 2012, Geospatial database for regional environmental assessment of central Colorado: U.S. Geological Survey Data Series 614, 76 p., https://doi.org/10.3133/ds614. Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Commission 5 CCR 1002-31. Regulation No. 31 The Basic Standards and Methodologies for Surface Water. Effective 12/31/2021, accessed on July 28, 2023 at https://cdphe.colorado.gov/water-quality-control-commission-regulations. Horton, J.D., and San Juan, C.A., 2022, Prospect- and mine-related features from U.S. Geological Survey 7.5- and 15-minute topographic quadrangle maps of the United States (ver. 8.0, September 2022): U.S. Geological Survey data release, https://doi.org/10.5066/F78W3CHG. Rockwell, B.W. and Bonham, L.C., 2017, Digital maps of hydrothermal alteration type, key mineral groups, and green vegetation of the western United States derived from automated analysis of ASTER satellite data: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5RK7.

  15. M

    DNR QuickLayers for ArcGIS 10

    • gisdata.mn.gov
    • data.wu.ac.at
    esri_addin
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR QuickLayers for ArcGIS 10 [Dataset]. https://gisdata.mn.gov/dataset/quick-layers
    Explore at:
    esri_addinAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The way to access Layers Quickly.

    Quick Layers is an Add-In for ArcMap 10.6+ that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 1.164

    To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers) using GDRS Manager.

    Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.

    Installation:

    After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
    1. Open ArcMap
    2. Customize -> Add-In Manager… -> Options
    3. Click add folder, and enter the location of the Quick Layers app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers
    4. After you do this, the Quick Layers toolbar will be available. To add it, go to Customize -> Toolbars and select DNR Quick Layers 10

    The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.

  16. M

    School Program Locations, Minnesota, SY2024-25

    • gisdata.mn.gov
    ags_mapserver, fgdb +4
    Updated Nov 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education Department (2024). School Program Locations, Minnesota, SY2024-25 [Dataset]. https://gisdata.mn.gov/dataset/struc-school-program-locs
    Explore at:
    html, jpeg, fgdb, shp, gpkg, ags_mapserverAvailable download formats
    Dataset updated
    Nov 6, 2024
    Dataset provided by
    Education Department
    Area covered
    Minnesota
    Description

    This dataset attempts to represent the point locations of every educational program in the state of Minnesota that is currently operational and reporting to the Minnesota Department of Education. It can be used to identify schools, various individual school programs, school districts (by office location), colleges, and libraries, among other programs. Please note that not all school programs are statutorily required to report, and many types of programs can be reported at any time of the year, so this dataset is by nature an incomplete snapshot in time.

    Maintenance of these locations are a result of an ongoing project to identify current school program locations where Food and Nutrition Services Office (FNS) programs are utilized. The FNS Office is in the Minnesota Department of Education (MDE). GIS staff at MDE maintain the dataset using school program and physical addresses provided by local education authorities (LEAs) for an MDE database called "MDE ORG". MDE GIS staff track weekly changes to program locations, along with comprehensive reviews each summer. All records have been reviewed for accuracy or edited at least once since January 1, 2020.

    Note that there may remain errors due to the number of program locations and inconsistency in reporting from LEAs and other organizations. In particular, some organization types (such as colleges and treatment programs) are not subject to annual reporting requirements, so some records included in this file may in fact be inactive or inaccurately located.

    Note that multiple programs may occur at the same location and are represented as separate records. For example, a junior and a senior high school may be in the same building, but each has a separate record in the data layer. Users leverage the "CLASS" and "ORGTYPE" attributes to filter and sort records according to their needs. In general, records at the same physical address will be located at the same coordinates.

    This data is now available in CSV format. For that format only, OBJECTID and Shape columns are removed, and the Shape column is replaced by Latitude and Longitude columns.

  17. Natural Heritage Communities

    • data.gis.ny.gov
    • nys-gis-resources-3-sharegisny.hub.arcgis.com
    Updated Nov 3, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Environmental Conservation (2009). Natural Heritage Communities [Dataset]. https://data.gis.ny.gov/datasets/0da09cdf37d549b1be9add9b522ee505
    Explore at:
    Dataset updated
    Nov 3, 2009
    Dataset authored and provided by
    New York State Department of Environmental Conservationhttp://www.dec.ny.gov/
    Area covered
    Description

    Features represent element occurrences of significant natural communities (ecological communities), as recorded in the New York Natural Heritage Program's Biodiversity Database (Biotics). An element occurrence is one natural community type at one location. Examples of community types include deep emergent marsh, red maple-hardwood swamp, dwarf shrub bog, hemlock-northern hardwood forest, and tidal creek. Natural community occurrences in this dataset are considered significant from a statewide perspective. NY Natural Heritage documents all occurrences of community types that are rare in New York State. For more common community types, NY Natural Heritage documents occurrences where the community at that location is ranked as being of excellent or good quality, by meeting specific, documented criteria for size, undisturbed and intact condition, and quality of the surrounding landscape. A natural community is an assemblage of interacting plant and animal populations that share a common environment; the particular assemblage of plant and animal species occurs across the landscape in areas with similar environmental conditions. Significant natural communities are rare or high-quality wetlands, forests, grasslands, ponds, streams, and other types of habitats, ecosystems, and natural areas. NY Natural Heritage tracks locations of significant natural communities because they serve as habitat for a wide range of plants and animals, both rare and common; and because community occurrences in good condition support intact ecological processes and provide ecological value and services.

  18. H

    Example of Watershed Delineation with GRASS GIS in CyberGIS-Jupyter for...

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated May 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Young-Don Choi (2020). Example of Watershed Delineation with GRASS GIS in CyberGIS-Jupyter for Water (CJW) [Dataset]. https://www.hydroshare.org/resource/4cbcfdd6e7f943e2969dd52e780bc52d
    Explore at:
    zip(3.8 MB)Available download formats
    Dataset updated
    May 14, 2020
    Dataset provided by
    HydroShare
    Authors
    Young-Don Choi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This is an example of watershed delineation which is the basic step to analyze an interesting watershed. We used GRASS GIS 7.8 version and shell script to apply GRASS GIS library.

  19. n

    Wildfire History by Age

    • prep-response-portal.napsgfoundation.org
    • data-napsg.opendata.arcgis.com
    • +2more
    Updated Jul 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2022). Wildfire History by Age [Dataset]. https://prep-response-portal.napsgfoundation.org/datasets/wildfire-history-by-age
    Explore at:
    Dataset updated
    Jul 7, 2022
    Dataset authored and provided by
    NAPSG Foundation
    Area covered
    Description

    This is a copy of another layer - see original source: https://www.arcgis.com/home/item.html?id=e02b85c0ea784ce7bd8add7ae3d293d0OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimetersFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send emailLayers

  20. e

    Data from: GIS40 GIS Coverages Defining the Sample Locations of Konza...

    • portal.edirepository.org
    bin
    Updated Feb 1, 2001
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Skibbe (2001). GIS40 GIS Coverages Defining the Sample Locations of Konza Consumer Data [Dataset]. http://doi.org/10.6073/pasta/73bd0d71530038eca16dafa3ded6ae13
    Explore at:
    binAvailable download formats
    Dataset updated
    Feb 1, 2001
    Dataset provided by
    EDI
    Authors
    Adam Skibbe
    Time period covered
    Jan 1, 1982 - Dec 31, 2012
    Area covered
    Variables measured
    FID, SITE, TRAP, Label, SWEEP, Shape, DATAID, LENGTH, X_COOR, Y_COOR, and 4 more
    Description

    These data show the sampling locations for the consumer datasets at Konza Prairie. Record type 1 defines the starting points for sweep samples of grasshoppers across Konza Prairie (GIS400). These data may be used in conjunction with the sweep sample datasets (CGR02). Record type 2 defines the starting points for sweep samples of grasshoppers across Konza Prairie (GIS401), focusing on grazing impact. These data may be used in conjunction with the sweep sample datasets (CGR02Z). Record type 6 defines the trap locations for small mammal sampling across Konza Prairie (GIS405). These data may be used in conjunction with CSM0X. Record type 11 defines the stream stretches for fish sampling across Konza Prairie (GIS410). These data may be used in conjunction with CFC01.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Virginia Geographic Information Network (2021). NG9-1-1 GIS Recommendations - Part 6 - What's Next [Dataset]. https://hub.arcgis.com/documents/b40712f1219d437bb31b2df9fec435bb

NG9-1-1 GIS Recommendations - Part 6 - What's Next

Explore at:
Dataset updated
Feb 4, 2021
Dataset authored and provided by
Virginia Geographic Information Network
Description

The GIS component of Virginia's NG9-1-1 deployments is moving in waves, with new groups of localities starting the onboarding process every three months. Well into our third wave, new resources and recommendations on GIS related topics are now available on the VGIN 9-1-1 & GIS page. This is available as a large combined document, Next Generation 9-1-1 GIS Recommendations. However since some information is more useful for localities earlier in their project and other information more useful later, we are also posting each section as its own document. The parts include:1) Boundaries in Next Generation 9-1-12) Preparing Your Data and Provisioning into EGDMS3) Outsourced GIS Data Maintenance and NG9-1-14) Emergency Service Boundary Layers5) Attribution6) What's NextSome of the parts are technical that reflect choices and options to make with boundary lines, or specific recommendations on how to create globally unique IDs or format display name fields. In these areas, we hope to share recommendations from Intrado and point users to specific portions of the NENA GIS Data Model Standard for examples. The current version is 1.1, published February 2021.

Search
Clear search
Close search
Google apps
Main menu