Facebook
TwitterThe Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the
Facebook
TwitterThe Transboundary Geospatial Fabric (TGF) is a dataset of spatial modeling units consistent with the Geospatial Fabric for National Hydrologic Modeling (abbreviated within this document as GFv1, Viger and Bock, 2014). These features were derived from National Hydrography Dataset Plus High Resolution data (NHDPlus HR, U.S. Geological Survey [USGS], 2018) in the following conterminous United States (CONUS) - Canada transboundary four-digit Hydrologic Units (HUC4): 0101, 0105, 0108, 0901, 0902, 0903, 0904, 1005, 1006, 1701, 1702, and 1711. The data described here include the following vector feature classes: points of interest (POIs), a stream network (nsegment), major waterbodies (waterbodies), and hydrologic response units (nhru). These feature classes are contained within the Environmental Systems Research Institute (ESRI) geodatabase format (TGF.gdb).
Facebook
TwitterThis data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.
All previously released versions of this data are available on the DCP Website: BYTES of the BIG APPLE. Current version: 202510
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Geospatial Fabric is a dataset of spatial modeling units for use within the National Hydrologic Model that covers the conterminous United States (CONUS), Alaska, and most major river basins that flow in from Canada. This U.S. Geological Survey (USGS) data release consists of the geospatial fabric features and other related datasets created to expand the National Hydrologic Model to Hawaii. This page contains data and information related to the GIS features of the Geospaital Fabric for National Hydrologic Model, Hawaii domain. An Open Geospatial Consortium geopackage (GF_20.gpkg) contains 4 feature layers (layer names in parentheses): points of interest (poi), a stream network (nsegment), aggregated catchments (catchment), and hydrologic repsonse units (nhru). Features were derived from NHDPlus, version 2.0, and several hydroclimatic datasets representing domain-specific processes and key drainage basins within the Hawaii. All data cover the National Hydrologic Model's (NHM) ...
Facebook
TwitterLinearFeaturesDerivedFromAer
Facebook
TwitterThis web map shows natural features point and polygon layers from OSM (OpenStreetMap) in India.OSM is a collaborative, open project to create a freely available and editable map of the world. Geographic information about streets, rivers, borders, points of interest and areas are collected worldwide and stored in a freely accessible database. Everyone can participate and contribute to OSM. The geographic information available on OSM relies entirely on volunteers or contributors.The attributes are given below:BeachCave EntranceCliffGlacierPeakSpringTreeVolcanoThese map layers are offered by Esri India Content. The content team updates the map layers quarterly. If you have any questions or comments, please let us know via content@esri.in.
Facebook
TwitterData was digitized from 1:31,680 mylar overlays of mylar orthophoto quads using ARC/INFO. Data available from the United States Department of Agriculture Forest Service.
Facebook
TwitterThe Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 18 of the Atlas, Jurassic and Lowermost Cretaceous Strata of the Western Canada Sedimentary Basin, Figure 17, Jurassic Structure. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Facebook
Twitter**Suggested to use 'Download' button instead of 'Open in ArcGIS Pro'The REST service page displays all data provided in this layer package: https://arcgis.dnr.alaska.gov/arcgis/rest/services/Mapper/Base_Layers/FeatureServer
Facebook
TwitterOverview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (GIS data, Geospatial data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the GIS data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Facebook
TwitterThe Geospatial Fabric for National Hydrologic Modeling (Viger and Bock, 2014; Bock and others, 2020) is a dataset of hydrographic features and spatial data designed for use within the National Hydrologic Model that covers the conterminous United States (CONUS), Hawaii, and most major river basins that flow in from Canada. This U.S. Geological Survey (USGS) data release consists of the geospatial fabric features and other related spatial datasets created to expand the National Hydrologic Model to Alaska. This child item contains data and information related to the GIS features of the Geospatial Fabric for National Hydrologic Model, Alaska _domain. Two Open Geospatial Consortium geopackages are provided: one containing source layers that have had some pre-processing done from their native data formats (Reference_19.gpkg), and one (NHM_19.gpkg) containing 4 final feature layers for the NHM: points of interest (pois), a stream network (nsegment), aggregated catchments (catchments), and hydrologic response units (nhru). Features were derived from the MERRIT Hydro Global Hydrography Dataset.
Facebook
TwitterThe Geospatial Fabric version 1.1 (GFv1.1 or v1_1) is a dataset of spatial modeling units covering the conterminous United States (CONUS) and most major river basins that flow in from Canada. The GFv1.1 is an update to the original Geospatial Fabric (GFv1, Viger and Bock, 2014) for the National Hydrologic Modeling (NHM). Analogous to the GFv1, the GFv1.1 described here includes the following vector feature classes: points of interest (POIs_v1_1), a stream network (nsegment_v1_1), and hydrologic response units (nhru_v1_1), with several additional ancillary tables. These data are contained within the Environmental Systems Research Institute (ESRI) geodatabase format (GFv1.1.gdb).
Facebook
TwitterMassachusetts water features, including lakes, ponds, rivers, streams and wetlands. From USGS hydrography. For full metadata and links to download free data please visit https://www.mass.gov/info-details/massgis-data-massdep-hydrography-125000.
Facebook
Twitter**Suggested to use 'Download' button instead of 'Open in ArcGIS Pro'The REST service page displays all data provided in this layer package: https://arcgis.dnr.alaska.gov/arcgis/rest/services/Mapper/Surface_Classification/FeatureServer
Facebook
TwitterThis layer provides the linear water features for geographic display and analysis at regional and national levels. It represents the linear water features (for example, aqueducts, canals, intracoastal waterways, and streams) of the United States. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA National Atlas Water Feature Lines Rivers and Streams.
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterSoutheastern Minnesota is part of the Upper Mississippi Valley Karst that includes southwestern Wisconsin and northeastern Iowa. In Minnesota, surface karst features (including but not restricted to sinkholes, caves, stream sinks, and karst springs) are observed to primarily occur where 50 feet or less of unconsolidated material overlies Paleozoic carbonate bedrock, the St. Peter Sandstone, or the Mesoproterozoic Hinckley Sandstone.
The University of Minnesota and the Minnesota Geological Survey have been mapping karst features since the early 1980s. The Minnesota Department of Natural Resources became involved in the process in the 1990s and is now responsible for maintaining the karst feature inventory and continuing mapping. The Karst Features Inventory (KFI), formerly known as the Karst Features Database, contains both reported and field verified karst feature locations and additional remarks, measurements, and other historical data for features where available.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model infrastructure (NHM; Regan and others, 2018). This child page specifically contains the spatial model features (hydrologic response units [HRU_subset.zip] and stream segments [Segments_subset.zip]) on which model inputs and outputs are based. The assembly of model-ready files results in HRU and segment IDs that are different than those in the NHM database. Two "crosswalk files" (nhm_hru_id_crosswalk.csv, nhm_segment_id_crosswalk.csv) are provided so that the model inputs and outputs can be mapped to the NHM database IDs in the GIS files.
Facebook
TwitterThe Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 9 of the Atlas, Middle Ordovician to Lower Devonian Strata of the Western Canada Sedimentary Basin, Figure 1, Distribution map. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Facebook
TwitterThe Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 27 of the Atlas, Geological History of the Williston Basin and Sweetgrass Arch, Figure 5, Sweetgrass Arch and Williston Basin Tectonic Elements. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Facebook
TwitterThe Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the