U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature c ...
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Transboundary Geospatial Fabric (TGF) is a dataset of spatial modeling units consistent with the Geospatial Fabric for National Hydrologic Modeling (abbreviated within this document as GFv1, Viger and Bock, 2014). These features were derived from National Hydrography Dataset Plus High Resolution data (NHDPlus HR, U.S. Geological Survey [USGS], 2018) in the following conterminous United States (CONUS) - Canada transboundary four-digit Hydrologic Units (HUC4): 0101, 0105, 0108, 0901, 0902, 0903, 0904, 1005, 1006, 1701, 1702, and 1711. The data described here include the following vector feature classes: points of interest (POIs), a stream network (nsegment), major waterbodies (waterbodies), and hydrologic response units (nhru). These feature classes are contained within the Environmental Systems Research Institute (ESRI) geodatabase format (TGF.gdb).
This data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.
All previously released versions of this data are available at BYTES of the BIG APPLE - Archive.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An Open Context "predicates" dataset item. Open Context publishes structured data as granular, URL identified Web resources. This "Variables" record is part of the "Avkat Archaeological Project" data publication.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
The Geospatial Fabric version 1.1 (GFv1.1 or v1_1) is a dataset of spatial modeling units covering the conterminous United States (CONUS) and most major river basins that flow in from Canada. The GFv1.1 is an update to the original Geospatial Fabric (GFv1, Viger and Bock, 2014) for the National Hydrologic Modeling (NHM). Analogous to the GFv1, the GFv1.1 described here includes the following vector feature classes: points of interest (POIs_v1_1), a stream network (nsegment_v1_1), and hydrologic response units (nhru_v1_1), with several additional ancillary tables. These data are contained within the Environmental Systems Research Institute (ESRI) geodatabase format (GFv1.1.gdb).
The Geospatial Fabric is a dataset of spatial modeling units for use within the National Hydrologic Model that covers the conterminous United States (CONUS), Alaska, and most major river basins that flow in from Canada. This U.S. Geological Survey (USGS) data release consists of the geospatial fabric features and other related datasets created to expand the National Hydrologic Model to Hawaii. This page contains data and information related to the GIS features of the Geospaital Fabric for National Hydrologic Model, Hawaii _domain. An Open Geospatial Consortium geopackage (GF_20.gpkg) contains 4 feature layers (layer names in parentheses): points of interest (poi), a stream network (nsegment), aggregated catchments (catchment), and hydrologic repsonse units (nhru). Features were derived from NHDPlus, version 2.0, and several hydroclimatic datasets representing _domain-specific processes and key drainage basins within the Hawaii. All data cover the National Hydrologic Model's (NHM) Hawaiin _domain. The NHM is a modeling infrastructure consisting of three main parts: 1) an underlying geospatial fabric of modeling units (hydrologic response units and stream segments) with an associated parameter database, 2) a model input data archive, and 3) a repository of the physical model simulation code bases (Regan and others, 2014). The pois represent hydro locations and points on the network. Segments are connected by the pois and are used to route streamflow and characterize upstream watershed conditions. The HRUs represent the spatial modeling units at which most of the physical processes (such as precipitation, runoff, evapotranspiration, and infiltration) are simulated. Some HRUs are connected to a corresponding segment, and may represent left and right-bank areas of each stream segment. See Regan and others (2018) and entities and attributes for more information.
The Geospatial Fabric for National Hydrologic Modeling (Viger and Bock, 2014; Bock and others, 2020) is a dataset of hydrographic features and spatial data designed for use within the National Hydrologic Model that covers the conterminous United States (CONUS), Hawaii, and most major river basins that flow in from Canada. This U.S. Geological Survey (USGS) data release consists of the geospatial fabric features and other related spatial datasets created to expand the National Hydrologic Model to Alaska. This child item contains data and information related to the GIS features of the Geospatial Fabric for National Hydrologic Model, Alaska domain. Two Open Geospatial Consortium geopackages are provided: one containing source layers that have had some pre-processing done from their native data formats (Reference_19.gpkg), and one (NHM_19.gpkg) containing 4 final feature layers for the NHM: points of interest (pois), a stream network (nsegment), aggregated catchments (catchments), and hydrologic response units (nhru). Features were derived from the MERRIT Hydro Global Hydrography Dataset.
The
MassGIS Topographic Features for Basemap is a general-reference map that
contains a variety of features, all from the MassGIS database. The map
was designed by MassGIS staff in ESRI's ArcMap 10.x software and was
cached (pre-rendered) for the Web using ArcGIS Server 10.x. The caching
process greatly speeds the display of all basemap features.This Topographic Base includes shaded relief, elevation contour lines with labels in feet, protected open space (parks, forests, preserves, etc.), hydrography (lakes, ponds, rivers, streams, wetlands), ocean, surrounding states, developed land areas, and airfields and runways.Other
"basemap" features, like streets, infrastructure (schools, hospitals,
rail lines, etc.) and political boundaries, are included in the "MassGIS
Detailed Features Basemap Map Layer" and may be drawn atop this
Topographic Base to display a more complete basemap.See full details
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Version: GOGI_V10_2This data was downloaded as a File Geodatabse from EDX at https://edx.netl.doe.gov/dataset/global-oil-gas-features-database. This data was developed using a combination of big data computing, custom search and data integration algorithms, and expert driven search to collect open oil and gas data resources worldwide. This approach identified over 380 data sets and integrated more than 4.8 million features into the GOGI database.Access the technical report describing how this database was produced using the following link: https://edx.netl.doe.gov/dataset/development-of-an-open-global-oil-and-gas-infrastructure-inventory-and-geodatabase” Acknowledgements: This work was funded under the Climate and Clean Air Coalition (CCAC) Oil and Gas Methane Science Studies. The studies are managed by United Nations Environment in collaboration with the Office of the Chief Scientist, Steven Hamburg of the Environmental Defense Fund. Funding was provided by the Environmental Defense Fund, OGCI Companies (Shell, BP, ENI, Petrobras, Repsol, Total, Equinor, CNPC, Saudi Aramco, Exxon, Oxy, Chevron, Pemex) and CCAC.Link to SourcePoint of Contact: Jennifer Bauer email:jennifer.bauer@netl.doe.govMichael D Sabbatino email:michael.sabbatino@netl.doe.gov
Data was digitized from 1:31,680 mylar overlays of mylar orthophoto quads using ARC/INFO. Data available from the United States Department of Agriculture Forest Service.
CDFW BIOS GIS Dataset, Contact: Eric Haney, Description: Beginning in 1998, a multi-agency cooperative project was aimed at collecting, archiving, and standardizing the electronic formats of information generated by fisheries resource management agencies and tribes throughout California. Major data categories include adult abundance population estimates, actual fish and/or carcass counts, counts of fish collected at dams, weirs, or traps, harvest data and redd counts. This shapefile, in general, was generated from fully routed 1:100,000 hydrography.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Massachusetts water features, including lakes, ponds, rivers, streams and wetlands. From USGS hydrography. For full metadata and links to download free data please visit https://www.mass.gov/info-details/massgis-data-massdep-hydrography-125000.
Attribution-NoDerivs 3.0 (CC BY-ND 3.0)https://creativecommons.org/licenses/by-nd/3.0/
License information was derived automatically
The seamless, county-wide parcel layer was digitized from official Assessor Parcel (AP) Maps which were originally maintained on mylar sheets and/or maintained as individual Computer Aided Design (CAD) drawing files (e.g., DWG). The CRA office continues to maintain the official AP Maps in CAD drawings and Information Systems Department/Geographic Information Systems (ISD/GIS) staff apply updates from these maps to the seamless parcel base in the County’s Enterprise GIS. The seamless parcel layer is updated and published to the Internet on a monthly basis.The seamless parcel layer was developed from the source data using the general methodology outlined below. The mylar sheets were scanned and saved to standard image file format (e.g., TIFF). The individual scanned maps or CAD drawing files were imported into GIS software and geo-referenced to their corresponding real-world locations using high resolution orthophotography as control. The standard approach was to rescale and rotate the scanned drawing (or CAD file) to match the general location on the orthophotograph. Then, appropriate control points were selected to register and rectify features on the scanned map (or CAD drawing file) to the orthophotography. In the process, features in the scanned map (or CAD drawing file) were transformed to real-world coordinates, and line features were created using “heads-up digitizing” and stored in new GIS feature classes. Recommended industry best practices were followed to minimize root mean square (RMS) error in the transformation of the data, and to ensure the integrity of the overall pattern of each AP map relative to neighboring pages. Where available Coordinate Geometry (COGO) & survey data, tied to global positioning systems (GPS) coordinates, were also referenced and input to improve the fit and absolute location of each page. The vector lines were then assembled into a polygon features, with each polygon being assigned a unique identifier, the Assessor Parcel Number (APN). The APN field in the parcel table was joined to the corresponding APN field in the assessor property characteristics table extracted from the MPTS database to create the final parcel layer. The result is a seamless parcel land base, each parcel polygon coded with a unique APN, assembled from approximately 6,000 individual map page of varying scale and accuracy, but ensuring the correct topology of each feature within the whole (i.e., no gaps or overlaps). The accuracy and quality of the parcels varies depending on the source. See the fields RANK and DESCRIPTION fields below for information on the fit assessment for each source page. These data should be used only for general reference and planning purposes. It is important to note that while these data were generated from authoritative public records, and checked for quality assurance, they do not provide survey-quality spatial accuracy and should NOT be used to interpret the true location of individual property boundary lines. Please contact the Sonoma County CRA and/or a licensed land surveyor before making a business decision that involves official boundary descriptions.
The DNR Hydrography Dataset is the centralized SDE data storage for master versions of DNR hydrographic spatial features (effective 2012). It includes the authoritative versions of the following statewide feature classes:
The DNR Hydrography Dataset is a collection of the "best available" DNR spatial features representing MN surficial hydrology. These features originate from multiple sources representing a range of scales and accuracies. All feature classes are (will eventually be) topologically related and will function as an integrated set of statewide features. Most DNR hydro-related layers are (will eventually be) derived from this central data storage so that master features may be edited once and then remain synchronized among all derived layers.
NOTE: The DNR Hydrography dataset replaces the older DNR 24K and DNR 100K data layers, including those derived layers listed below. Users should discontinue use of these older layers.
100K: dnr_100k_hydro_area_features, dnr_100k_hydro_stream_centerlines, lake_dnrpy2, wetl_dnrpy2, strm_usgsln2
24K: dnr_24k_lakes_and_open_water, dnr_24k_rivers_and_streams, dnr_24k_perennial_stream, lake_openwpy3, strm_baseln3, strm_pwiln3
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 15 of the Atlas, Permian Strata of the Western Canada Sedimentary Basin, Figure 16, Permian Lithology: Carbonate. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
All available bathymetry and related information for Crowsnest Lake were collected and hard copy maps digitized where necessary. The data were validated against more recent data (Shuttle Radar Topography Mission 'SRTM' imagery and Indian Remote Sensing 'IRS' imagery) and corrected where necessary. The published data set contains the lake bathymetry formatted as an Arc ascii grid. Bathymetric contours and the boundary polygon are available as shapefiles.
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 7 of the Atlas, Paleographic Evolution of the Cratonic Platform - Cambrian to Triassic, Figure 13, Permian (PT1) Paleogeography. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This GIS dataset is part of a digital compilation of the bedrock geology of Alberta. It is one of the datasets used to produce Alberta Geological Survey (AGS) Map 600. This dataset represents the compilation of existing geological maps and original geological mapping by AGS staff. Mapping in support of the dataset included field observations and creating three-dimensional models of subsurface stratigraphy based on the interpretation of geophysical logs from oil and gas wells. Each three-dimensional formation surface was projected to a model of the bedrock surface, and the intersection formed the first approximation of the position of the geological contact at the base of the surficial deposits. We adjusted these preliminary contacts to honour outcrop data and the interpretation of the bedrock unit immediately below surficial deposits in individual wells. The data were created in geodatabase format and output for public distribution in shapefile format. AGS Open File Report 2013-02 presents additional information on data sources related to this dataset.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature c ...