100+ datasets found
  1. D

    Gis Data Collector Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Gis Data Collector Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/gis-data-collector-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Collector Market Outlook



    The global GIS Data Collector market size is anticipated to grow from USD 4.5 billion in 2023 to approximately USD 12.3 billion by 2032, at a compound annual growth rate (CAGR) of 11.6%. The growth of this market is largely driven by the increasing adoption of GIS technology across various industries, advances in technology, and the need for effective spatial data management.



    An important factor contributing to the growth of the GIS Data Collector market is the rising demand for geospatial information across different sectors such as agriculture, construction, and transportation. The integration of advanced technologies like IoT and AI with GIS systems enables the collection and analysis of real-time data, which is crucial for effective decision-making. The increasing awareness about the benefits of GIS technology and the growing need for efficient land management are also fuelling market growth.



    The government sector plays a significant role in the expansion of the GIS Data Collector market. Governments worldwide are investing heavily in GIS technology for urban planning, disaster management, and environmental monitoring. These investments are driven by the need for accurate and timely spatial data to address critical issues such as climate change, urbanization, and resource management. Moreover, regulatory policies mandating the use of GIS technology for infrastructure development and environmental conservation are further propelling market growth.



    Another major growth factor in the GIS Data Collector market is the continuous technological advancements in GIS software and hardware. The development of user-friendly and cost-effective GIS solutions has made it easier for organizations to adopt and integrate GIS technology into their operations. Additionally, the proliferation of mobile GIS applications has enabled field data collection in remote areas, thus expanding the scope of GIS technology. The advent of cloud computing has further revolutionized the GIS market by offering scalable and flexible solutions for spatial data management.



    Regionally, North America holds the largest share of the GIS Data Collector market, driven by the presence of key market players, advanced technological infrastructure, and high adoption rates of GIS technology across various industries. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, primarily due to rapid urbanization, government initiatives promoting GIS adoption, and increasing investments in smart city projects. Other regions such as Europe, Latin America, and the Middle East & Africa are also experiencing significant growth in the GIS Data Collector market, thanks to increasing awareness and adoption of GIS technology.



    The role of a GPS Field Controller is becoming increasingly pivotal in the GIS Data Collector market. These devices are essential for ensuring that data collected in the field is accurate and reliable. By providing real-time positioning data, GPS Field Controllers enable precise mapping and spatial analysis, which are critical for applications such as urban planning, agriculture, and transportation. The integration of GPS technology with GIS systems allows for seamless data synchronization and enhances the efficiency of data collection processes. As the demand for real-time spatial data continues to grow, the importance of GPS Field Controllers in the GIS ecosystem is expected to rise, driving further innovations and advancements in this segment.



    Component Analysis



    The GIS Data Collector market is segmented by component into hardware, software, and services. Each of these components plays a crucial role in the overall functionality and effectiveness of GIS systems. The hardware segment includes devices such as GPS units, laser rangefinders, and mobile GIS devices used for field data collection. The software segment encompasses various GIS applications and platforms used for data analysis, mapping, and visualization. The services segment includes consulting, training, maintenance, and support services provided by GIS vendors and solution providers.



    In the hardware segment, the demand for advanced GPS units and mobile GIS devices is increasing, driven by the need for accurate and real-time spatial data collection. These devices are equipped with high-precision sensors and advanced features such as real-time kinematic (RTK) positioning, which enhance

  2. a

    SAR Field Data Collection Form User Guide

    • napsg.hub.arcgis.com
    • gis-fema.hub.arcgis.com
    • +1more
    Updated Sep 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). SAR Field Data Collection Form User Guide [Dataset]. https://napsg.hub.arcgis.com/documents/1c0d11cbfb724367814669355007f23c
    Explore at:
    Dataset updated
    Sep 10, 2018
    Dataset authored and provided by
    NAPSG Foundation
    Description

    Overview: This document is a reference guide for users of the SAR Field Data Collection Form User Guide. The purpose is to provide a better understanding of how to use the form in the field.

    The underlying technology used with this form is likely to evolve and change over time, therefore technical user guides will be provided as appendices to this document.

    Background: The SAR Field Data Collection Form was created by an interdisciplinary group of first responders, decision-makers and technology specialists from across Federal, State, and Local Urban Search and Rescue Teams – the NAPSG Foundation SAR Working Group. If you have any questions or concerns regarding this document and associated materials, please send a note to comments@publicsafetygis.org.

    Purpose: The SAR Field Data Collection Form is intended to provide a standardized approach to the collection of information during disaster response alongside resource management and tracking of assets.The primary goal of this approach is to obtain situational awareness (where, when, what) for SAR Teams in the field across four relevant themes: Victims that may need assistance or have already been helped. Hazards that must be avoided or mitigated. Damage that have been rapidly assessed for damage, when time and the mission permits. Other mission critical intelligence that vary based on mission type. The secondary goal of this approach is to provide essential elements of information to those not currently on-scene of the disaster. Using the themes above, information and maps can be shared based on “need to know”. If you are a technology specialist looking to deploy this application on your own see the Deployment Kit.

  3. F

    Field Data Collection Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Field Data Collection Software Report [Dataset]. https://www.marketreportanalytics.com/reports/field-data-collection-software-76580
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Field Data Collection Software market is experiencing robust growth, driven by the increasing need for efficient and accurate data capture across diverse industries. The market's expansion is fueled by several key factors. Firstly, the rising adoption of mobile technologies and cloud computing provides seamless data collection and real-time analysis capabilities, enhancing operational efficiency and decision-making. Secondly, the growing demand for data-driven insights across sectors like construction, oil and gas, and environmental monitoring is pushing organizations to adopt sophisticated field data collection solutions. This trend is further amplified by the increasing focus on safety and compliance regulations, demanding meticulous data recording and analysis for risk mitigation. Furthermore, the integration of advanced features like GPS tracking, image capture, and automated data processing streamlines workflows and minimizes manual errors, thereby improving overall productivity and cost-effectiveness. While initial investment costs can pose a challenge for some businesses, the long-term return on investment in terms of improved efficiency, reduced operational costs, and data-driven decision making is increasingly outweighing the initial expenses. The market's segmented nature, with applications spanning environmental monitoring, construction, oil & gas, and transportation, among others, and various deployment models (cloud-based and on-premises), indicates a wide spectrum of user needs and preferences, opening opportunities for tailored software solutions. The competitive landscape is characterized by a mix of established players and emerging startups offering a range of solutions. While established companies like SafetyCulture and ArcGIS bring experience and extensive feature sets, newer companies are entering with innovative technologies and niche solutions. The market is expected to continue its growth trajectory, driven by technological advancements, increasing data demands across industries, and a growing awareness of the benefits of efficient field data management. The North American and European markets currently hold a significant share, but emerging economies in Asia-Pacific and the Middle East & Africa are expected to witness rapid growth in adoption over the forecast period, largely due to increasing infrastructure development and rising digitization efforts in these regions. The shift towards cloud-based solutions is also a major trend, due to scalability and accessibility advantages over on-premises deployments. This trend is likely to intensify further in the coming years, driven by affordability and convenience.

  4. Esri - Field data collection

    • lecturewithgis.co.uk
    • teachwithgis.co.uk
    Updated Jun 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2022). Esri - Field data collection [Dataset]. https://lecturewithgis.co.uk/datasets/esri-field-data-collection-
    Explore at:
    Dataset updated
    Jun 6, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    I am the sector manager for Higher Education at Esri UK. What does this mean? Well, I look after universities making sure that they have access to the best GIS tools for teaching and research.

  5. G

    GIS Collectors Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Collectors Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-collectors-668368
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for GIS Collectors is experiencing robust growth, driven by increasing adoption of location-based services, the expanding need for precise geospatial data across various sectors, and the continuous advancements in mobile technology and data analytics capabilities. The market is segmented by hardware (handheld devices, tablets, drones) and software (field data collection apps, data management software). Key players like Hexagon, Trimble Geospatial, ESRI, Topcon, Handheld, and Wuhan South are actively innovating and expanding their product portfolios to cater to this growing demand. The market's expansion is further fueled by the rising need for efficient asset management, improved infrastructure planning, and precise mapping for various applications such as environmental monitoring, agriculture, and urban planning. Government initiatives promoting digitalization and smart city development are also contributing significantly to the market's growth trajectory. While high initial investment costs for hardware and software can act as a restraint, the long-term benefits in terms of operational efficiency and data accuracy are overcoming this challenge. We project a steady market growth over the forecast period, with a particular emphasis on the increasing penetration of cloud-based solutions and the integration of AI and machine learning for enhanced data processing and analysis. The period between 2019 and 2024 showed significant market expansion, setting a strong foundation for future growth. We estimate the market size in 2025 at $5 billion, based on observed trends and industry reports. This strong base, coupled with a projected Compound Annual Growth Rate (CAGR) of 12%, will drive considerable market expansion throughout the forecast period (2025-2033). The increasing demand across diverse sectors, from precision agriculture to utility management, will continue to be major drivers. Furthermore, the emergence of new technologies such as 5G and IoT will further enhance data collection and processing capabilities, leading to improved efficiencies and a further expansion of the market. The North American and European markets currently hold a significant share, but emerging economies in Asia-Pacific and Latin America are exhibiting accelerated growth potential, making them crucial regions for future expansion.

  6. a

    EXERCISE ONLY (1.3) - First Responder Field Data Collection Feature Layer...

    • napsg.hub.arcgis.com
    Updated Nov 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). EXERCISE ONLY (1.3) - First Responder Field Data Collection Feature Layer View [Dataset]. https://napsg.hub.arcgis.com/maps/5f08f8e486c344ad910629310ddb4661
    Explore at:
    Dataset updated
    Nov 15, 2018
    Dataset authored and provided by
    NAPSG Foundation
    Area covered
    Earth
    Description

    Exercise OnlyNon editable view of the feature layer created by the 2018 Winter Wrath Field Data Collection form, that is based on the Phase II SAR Field Data Collection Prototype Form v3.0c. This is a prototype (not for real-world use at this time) template of standardized core information collected by search and rescue and other first responders during a disaster in the field. It has been developed by the National Alliance For Public Safety GIS (NAPSG) Foundation with input from the SAR Field Data Collection Working Group.This template includes all XLSForm features supported in Survey123 for ArcGIS.v3.0 EnhancementsAll the waypoints are brought back together into one field. This should allow for better interoperability when appending points collected using a GPS and the Ironsights method.A field called "waypoint_cat_cal" was added to place each waypoint into a group (Structure, Human Interaction, Support, and Hazard). This field is hidden and is populated using an IF THEN statement based on the waypoint field. This field should allow for GIS personnel to easily create definition queries on the data. The State and County fields were removed from the survey itself, however, they are still in the service as a hidden field. These can be populated on the back end by the GISS. It is too complicated for a field user to accurately populate them in the field.Victim count is set using an If Then statement to automatically put in the value of 1 for any of the Human Interactions. In talking with people who are familiar with Iron Sights, they may just drop a point with a symbol and move on without filling in any of the other information. This would leave the Victim count blank and this would through off the totals of people that USAR teams contacted.The water depth field now specifies that the value entered is in inches. This will make it easier for the GIS to do modeling on flooded areas.Casualty Collection Point was added as a waypoint. Safety Zone symbol was changed to NWCG standard.All the name fields in the survey are in lowercase to allow for publishing in Portal.USNG was added as the Coordinate Format for the survey.A hidden field was added to record GPS accuracy. It reports in meters. If someone uses the map to pan and place the pin, then the accuracy comes through as Null.Please contact triage@publicsafetygis.org with comments or suggestions.

  7. u

    West Siberian Lowland Peatland GIS Data Collection

    • data.ucar.edu
    • arcticdata.io
    • +1more
    archive
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yongwei Sheng (2025). West Siberian Lowland Peatland GIS Data Collection [Dataset]. https://data.ucar.edu/dataset/west-siberian-lowland-peatland-gis-data-collection
    Explore at:
    archiveAvailable download formats
    Dataset updated
    Aug 1, 2025
    Authors
    Yongwei Sheng
    Time period covered
    Jan 1, 1971 - Dec 31, 2001
    Area covered
    Description

    This dataset contains the West Siberian Lowland (WSL) peatland GIS data collection. The collection covers the entire West Siberian lowland and was compiled from a wide array of data under the auspices of the NSF-funded Sensitivity of the West Siberian Lowland to Past and Present Climate project (Smith et al., 2000; Smith et al., 2004). Detailed physical characteristics of 9,691 individual peatlands (patches) were obtained from previously unpublished Russian field and ancillary map data, previously published depth measurements, and field depth and core measurements taken throughout the region during field campaigns in 1999, 2000, and 2001. The data collection features eight layers containing the detailed peatland inventory, political, and hydrographic information. Point data consist of field and laboratory measurements of peat depth, ash content, and bulk density. This research was funded by the National Science Foundation (NSF) Office of Polar Programs (OPP), grant number OPP-9818496.

  8. D

    GIS Collectors Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). GIS Collectors Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-collectors-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Collectors Market Outlook



    The global GIS collectors market size was valued at USD 1.5 billion in 2023 and is projected to reach USD 3.2 billion by 2032, growing at a CAGR of 8.5% during the forecast period. This growth can be attributed to the rising demand for accurate geographic data collection and analysis across various industries. The drive towards digital transformation and the increasing adoption of advanced technologies in sectors like construction, utilities, and environmental monitoring are significant growth factors for this market.



    One of the primary growth factors for the GIS collectors market is the increasing need for precise and reliable geographic data in urban planning and development. As cities expand and infrastructures develop, there is a growing demand for geospatial data to plan and manage urban regions effectively. GIS collectors provide accurate data collection, which facilitates better decision-making processes in urban planning. Moreover, the integration of GIS technology with other advanced technologies like IoT and AI is further enhancing its applicability and adoption in urban development projects.



    The agriculture sector is also significantly driving the growth of the GIS collectors market. Precision farming techniques rely heavily on accurate geospatial data to monitor and manage agricultural fields effectively. GIS collectors enable farmers to collect and analyze data on soil health, crop conditions, and water availability, which helps in optimizing resources and improving crop yields. The increasing emphasis on sustainable farming practices and the need to meet the food demands of a growing global population are further boosting the adoption of GIS collectors in agriculture.



    Additionally, environmental monitoring is emerging as a crucial application area, contributing to the market's expansion. With growing environmental concerns and the need for sustainable resource management, there is an increasing demand for technologies that can monitor and analyze environmental conditions efficiently. GIS collectors provide valuable data for tracking changes in land use, vegetation cover, and water resources, which is essential for conservation efforts and policy-making. The adoption of GIS collectors in environmental monitoring is expected to rise as governments and organizations focus more on environmental sustainability.



    Regionally, North America is expected to dominate the GIS collectors market during the forecast period, owing to the early adoption of advanced technologies and significant investments in geospatial data infrastructure. The presence of major market players and extensive applications in urban planning, environmental monitoring, and agriculture are driving the market in this region. Furthermore, the Asia Pacific region is anticipated to exhibit the highest growth rate due to rapid urbanization, increasing government initiatives for smart cities, and rising demand for precision agriculture practices.



    Product Type Analysis



    The GIS collectors market is segmented by product type into handheld GIS collectors, mobile GIS collectors, and desktop GIS collectors. Handheld GIS collectors are portable devices that allow users to collect geospatial data on-site with ease. These devices are typically used in field surveys, environmental monitoring, and utility management. The demand for handheld GIS collectors is driven by their convenience, ease of use, and ability to provide real-time data collection in remote and challenging environments. As industries continue to prioritize field data accuracy and efficiency, the adoption of handheld GIS collectors is expected to grow significantly.



    Mobile GIS collectors, often integrated with smartphones and tablets, offer enhanced flexibility and connectivity for geospatial data collection. These devices leverage mobile networks and cloud-based platforms to facilitate seamless data transfer and real-time analysis. The growing adoption of mobile GIS collectors can be attributed to the increasing reliance on mobile technology and the need for real-time data access and sharing. Industries such as transportation, utilities, and urban planning are increasingly deploying mobile GIS collectors to improve operational efficiency and decision-making processes.



    Desktop GIS collectors, on the other hand, are primarily used for high-precision geospatial data collection and analysis in office environments. These devices are equipped with advanced software and processing capabilities, making them ideal for complex data analysis and large-scale projects. The deman

  9. GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle...

    • technavio.com
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Canada, Japan, Germany, Russia, India, Brazil, France, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-in-the-utility-industry-analysis
    Explore at:
    Dataset updated
    Dec 31, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, Russia, Germany, United States, Canada
    Description

    Snapshot img

    GIS In Utility Industry Market Size 2025-2029

    The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.

    The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.

    What will be the Size of the GIS In Utility Industry Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure. Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.

    How is this GIS In Utility Industry Industry segmented?

    The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma

  10. GIS Market Analysis North America, Europe, APAC, South America, Middle East...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). GIS Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Germany, UK, Canada, Brazil, Japan, France, South Korea, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United Arab Emirates, United Kingdom, United States, Brazil, South Korea, Germany, Japan, Canada, France, Global
    Description

    Snapshot img

    GIS Market Size 2025-2029

    The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.

    The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
    By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
    

    What will be the Size of the GIS Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.

    The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.

    How is this GIS Industry segmented?

    The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Type
    
      Telematics and navigation
      Mapping
      Surveying
      Location-based services
    
    
    Device
    
      Desktop
      Mobile
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.

    The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.

    The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.

    Request Free Sample

    The Software segment was valued at USD 5.06 billion in 2019

  11. a

    03.9 Survey123 for ArcGIS: Collect Field Data with Smart Forms

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    • +1more
    Updated Feb 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 03.9 Survey123 for ArcGIS: Collect Field Data with Smart Forms [Dataset]. https://hub.arcgis.com/documents/af9d5c61fac44fde8699b5eab184cb42
    Explore at:
    Dataset updated
    Feb 17, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Survey123 for ArcGIS is a simple and intuitive form-centric field data gathering solution. This seminar teaches you about Survey123. The presenters demonstrate how to create both simple and more sophisticated surveys, collect data over the web and in the field, analyze and view the survey results with Survey123's reporting capabilities, and how survey data is integrated with the ArcGIS platform.This seminar was developed to support the following:Survey123 for ArcGIS

  12. H

    Data from: GIS database

    • dataverse.harvard.edu
    • dataone.org
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nang Tin Win (2023). GIS database [Dataset]. http://doi.org/10.7910/DVN/TV7J27
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Nang Tin Win
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27

    Time period covered
    Oct 1, 2020 - Sep 30, 2022
    Area covered
    Myanmar (Burma)
    Dataset funded by
    United States Agency for International Developmenthttp://usaid.gov/
    Description

    It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.

  13. D

    GIS Data Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Management Market Outlook



    The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



    One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



    Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



    The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



    Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



    Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



    Component Analysis



    The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

  14. e

    GIS Shapefile - Telephone Survey 2006, Geocoded, Baltimore County

    • portal.edirepository.org
    • search.dataone.org
    zip
    Updated Sep 10, 2004
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neil-Dunne (2004). GIS Shapefile - Telephone Survey 2006, Geocoded, Baltimore County [Dataset]. http://doi.org/10.6073/pasta/251e295195064f1dbf1feed5fad47140
    Explore at:
    zip(651 kilobyte)Available download formats
    Dataset updated
    Sep 10, 2004
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 1999 - Dec 31, 2011
    Area covered
    Description

    Tags

       survey, environmental behaviors, lifestyle, status, PRIZM, Baltimore Ecosystem Study, LTER, BES
    
    
    
    
       Summary
    
    
       BES Research, Applications, and Education
    
    
       Description
    
    
       Geocoded for Baltimore County. The BES Household Survey 2003 is a telephone survey of metropolitan Baltimore residents consisting of 29 questions. The survey research firm, Hollander, Cohen, and McBride conducted the survey, asking respondents questions about their outdoor recreation activities, watershed knowledge, environmental behavior, neighborhood characteristics and quality of life, lawn maintenance, satisfaction with life, neighborhood, and the environment, and demographic information. The data from each respondent is also associated with a PRIZM� classification, census block group, and latitude-longitude. PRIZM� classifications categorize the American population using Census data, market research surveys, public opinion polls, and point-of-purchase receipts. The PRIZM� classification is spatially explicit allowing the survey data to be viewed and analyzed spatially and allowing specific neighborhood types to be identified and compared based on the survey data. The census block group and latitude-longitude data also allow us additional methods of presenting and analyzing the data spatially. 
    
    
       The household survey is part of the core data collection of the Baltimore Ecosystem Study to classify and characterize social and ecological dimensions of neighborhoods (patches) over time and across space. This survey is linked to other core data including US Census data, remotely-sensed data, and field data collection, including the BES DemSoc Field Observation Survey. 
    
    
    
       The BES 2003 telephone survey was conducted by Hollander, Cohen, and McBride from September 1-30, 2003. The sample was obtained from the professional sampling firm Claritas, in order that their "PRIZM" encoding would be appended to each piece of sample (telephone number) supplied. Mailing addresses were also obtained so that a postcard could be sent in advance of interviewers calling. The postcard briefly informed potential respondents about the survey, who was conducting it, and that they might receive a phone call in the next few weeks. A stratified sampling method was used to obtain between 50 - 150 respondents in each of the 15 main PRIZM classifications. This allows direct comparison of PRIZM classifications. Analysis of the data for the general metropolitan Baltimore area must be weighted to match the population proportions normally found in the region. They obtained a total of 9000 telephone numbers in the sample. All 9,000 numbers were dialed but contact was only made on 4,880. 1508 completed an interview, 2524 refused immediately, 147 broke off/incomplete, 84 respondents had moved and were no longer in the correct location, and a qualified respondent was not available on 617 calls. This resulted in a response rate of 36.1% compared with a response rate of 28.2% in 2000. The CATI software (Computer Assisted Terminal Interviewing) randomized the random sample supplied, and was programmed for at least 3 attempted callbacks per number, with emphasis on pulling available callback sample prior to accessing uncalled numbers. Calling was conducted only during evening and weekend hours, when most head of households are home. The use of CATI facilitated stratified sampling on PRIZM classifications, centralized data collection, standardized interviewer training, and reduced the overall cost of primary data collection. Additionally, to reduce respondent burden, the questionnaire was revised to be concise, easy to understand, minimize the use of open-ended responses, and require an average of 15 minutes to complete. 
    
    
       The household survey is part of the core data collection of the Baltimore Ecosystem Study to classify and characterize social and ecological dimensions of neighborhoods (patches) over time and across space. This survey is linked to other core data, including US Census data, remotely-sensed data, and field data collection, including the BES DemSoc Field Observation Survey. 
    
    
       Additional documentation of this database is attached to this metadata and includes 4 documents, 1) the telephone survey, 2) documentation of the telephone survey, 3) metadata for the telephone survey, and 4) a description of the attribute data in the BES survey 2003 survey.
    
    
       This database was created by joining the GDT geographic database of US Census Block Group geographies for the Baltimore Metropolitan Statisticsal Area (MSA), with the Claritas PRIZM database, 2003, of unique classifications of each Census Block Group, and the unique PRIZM code for each respondent from the BES Household Telephone Survey, 2003. The GDT database is preferred and used because
    
  15. d

    GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-gis-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Thailand, Kenya, Saudi Arabia, United States of America, United Arab Emirates, Nigeria, Taiwan, Philippines, Egypt, Malaysia
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live includes:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  16. Vegetation - Southern Sierra Nevada Foothills [ds3073]

    • gis.data.ca.gov
    • catalog.data.gov
    • +2more
    Updated Apr 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2023). Vegetation - Southern Sierra Nevada Foothills [ds3073] [Dataset]. https://gis.data.ca.gov/datasets/d24b3f8c12314a9fb483909a1dede492
    Explore at:
    Dataset updated
    Apr 3, 2023
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Under contract to the California Department of Fish and Wildlife (CDFW), Aerial Information Systems (AIS) created a fine-scale vegetation map of portions of the Southern Sierra Nevada Foothills in central California. AIS subcontracted the California Native Plant Society (CNPS) to conduct field reconnaissance assistance for this project, as well as accuracy assessment (AA) field data collection; and Soar Environmental Consulting to assist in the AA field data collection. CDFW''s Vegetation Classification and Mapping Program (VegCAMP) provided in-kind service to allocate and score the AA. The mapping study area, consists of approximately 1,824,939 acres, of Mariposa, Madera, Tulare, Kern, and Los Angeles counties. Work was performed on the project between 2019 and 2022. The primary purpose of the project was to further CDFW''s goal of developing fine-scale digital vegetation maps as part of the California Biodiversity Initiative Roadmap of 2018.CNPS under separate contract and in collaboration with CDFW VegCAMP developed the floristic vegetation classification used for the project. The floristic classification follows protocols compliant with the Federal Geographic Data Committee (FGDC) and National Vegetation Classification Standards (NVCS).The vegetation map was produced applying heads-up digitizing techniques using a 2018 base of one-meter National Agricultural Imagery Program (NAIP) imagery (true-color and color infrared), in conjunction with ancillary data and imagery sources. Map polygons are assessed for Vegetation Type, Percent Cover, Exotics, Development Disturbance, and other attributes. The minimum mapping unit (MMU) is 2 acres; exceptions are made for wetlands and riparian types, which were mapped to a 1-acre MMU.Field reconnaissance and accuracy assessment enhanced map quality. There was a total of 111 mapping classes. The overall Fuzzy Accuracy Assessment rating for the final vegetation map,at the Alliance and Group levels, is 89.5 percent.

  17. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, San Miguel Island
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming,...

    • catalog.data.gov
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming, Montana, and Idaho (NPS, GRD, GRI, YELL, YELL digital map) adapted from U.S. Geological Survey published and unpublished maps and digital data (1956-2007), a Montana Bureau of Mines and Geology Open-File Reports map by Berg et al. (1999), and a Montana State University unpublished master's thesis map by Kragh, N. and M. Myers (2023) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-yellowstone-national-park-and-vicinity-wyoming-montana-and-ida
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Montana, Wyoming
    Description

    The Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming, Montana, and Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (yell_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (yell_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yell_geology_metadata_faq.pdf). Also included is a zip containing a Montana State University Master's thesis and supporting documents and data. The thesis focuses on addressing map boundary inconsistencies and remapping portions of the park. Data and documents supporting the thesis are 1.) a geodatabase containing field data points, 2.) a collection of documents describing field sites, 3.) spreadsheets containing geochemical analysis results, and 4.) photographs taken during field work. Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey, Montana Bureau of Mines and Geology and Montana State University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yell_geology_metadata.txt or yell_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Santa Rosa Island, California
    Description

    The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  20. a

    Minimum Standards for Field Observation of Vegetation and Related Properties...

    • gis.data.alaska.gov
    • agc.dnr.alaska.gov
    • +2more
    Updated Aug 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Geospatial Office (2022). Minimum Standards for Field Observation of Vegetation and Related Properties v1.1 [Dataset]. https://gis.data.alaska.gov/documents/817be3b0405a42aea91cee0b92d77f98
    Explore at:
    Dataset updated
    Aug 23, 2022
    Dataset authored and provided by
    Alaska Geospatial Office
    Description

    The Vegetation Technical Working Group (VTWG) of the Alaska Geospatial Council developed the Minimum Standards for Field Observation of Vegetation and Related Properties Version 1.1 (August 2022) to help ensure that vegetation data collected as part of independent vegetation survey, mapping, monitoring, and classification projects can support the production of a statewide vegetation map from quantitative data and the continued development of the U.S. National Vegetation Classification.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Gis Data Collector Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/gis-data-collector-market

Gis Data Collector Market Report | Global Forecast From 2025 To 2033

Explore at:
pdf, pptx, csvAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

GIS Data Collector Market Outlook



The global GIS Data Collector market size is anticipated to grow from USD 4.5 billion in 2023 to approximately USD 12.3 billion by 2032, at a compound annual growth rate (CAGR) of 11.6%. The growth of this market is largely driven by the increasing adoption of GIS technology across various industries, advances in technology, and the need for effective spatial data management.



An important factor contributing to the growth of the GIS Data Collector market is the rising demand for geospatial information across different sectors such as agriculture, construction, and transportation. The integration of advanced technologies like IoT and AI with GIS systems enables the collection and analysis of real-time data, which is crucial for effective decision-making. The increasing awareness about the benefits of GIS technology and the growing need for efficient land management are also fuelling market growth.



The government sector plays a significant role in the expansion of the GIS Data Collector market. Governments worldwide are investing heavily in GIS technology for urban planning, disaster management, and environmental monitoring. These investments are driven by the need for accurate and timely spatial data to address critical issues such as climate change, urbanization, and resource management. Moreover, regulatory policies mandating the use of GIS technology for infrastructure development and environmental conservation are further propelling market growth.



Another major growth factor in the GIS Data Collector market is the continuous technological advancements in GIS software and hardware. The development of user-friendly and cost-effective GIS solutions has made it easier for organizations to adopt and integrate GIS technology into their operations. Additionally, the proliferation of mobile GIS applications has enabled field data collection in remote areas, thus expanding the scope of GIS technology. The advent of cloud computing has further revolutionized the GIS market by offering scalable and flexible solutions for spatial data management.



Regionally, North America holds the largest share of the GIS Data Collector market, driven by the presence of key market players, advanced technological infrastructure, and high adoption rates of GIS technology across various industries. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, primarily due to rapid urbanization, government initiatives promoting GIS adoption, and increasing investments in smart city projects. Other regions such as Europe, Latin America, and the Middle East & Africa are also experiencing significant growth in the GIS Data Collector market, thanks to increasing awareness and adoption of GIS technology.



The role of a GPS Field Controller is becoming increasingly pivotal in the GIS Data Collector market. These devices are essential for ensuring that data collected in the field is accurate and reliable. By providing real-time positioning data, GPS Field Controllers enable precise mapping and spatial analysis, which are critical for applications such as urban planning, agriculture, and transportation. The integration of GPS technology with GIS systems allows for seamless data synchronization and enhances the efficiency of data collection processes. As the demand for real-time spatial data continues to grow, the importance of GPS Field Controllers in the GIS ecosystem is expected to rise, driving further innovations and advancements in this segment.



Component Analysis



The GIS Data Collector market is segmented by component into hardware, software, and services. Each of these components plays a crucial role in the overall functionality and effectiveness of GIS systems. The hardware segment includes devices such as GPS units, laser rangefinders, and mobile GIS devices used for field data collection. The software segment encompasses various GIS applications and platforms used for data analysis, mapping, and visualization. The services segment includes consulting, training, maintenance, and support services provided by GIS vendors and solution providers.



In the hardware segment, the demand for advanced GPS units and mobile GIS devices is increasing, driven by the need for accurate and real-time spatial data collection. These devices are equipped with high-precision sensors and advanced features such as real-time kinematic (RTK) positioning, which enhance

Search
Clear search
Close search
Google apps
Main menu