100+ datasets found
  1. a

    National Flood Hazard Layer

    • hamhanding-dcdev.opendata.arcgis.com
    • gis-day-mapathon-2021-sdi.hub.arcgis.com
    • +8more
    Updated Apr 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Geoplatform (2024). National Flood Hazard Layer [Dataset]. https://hamhanding-dcdev.opendata.arcgis.com/maps/ChesBay::nodes/about
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    Chesapeake Geoplatform
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The National Flood Hazard Layer (NFHL) is a geospatial database that contains current effective flood hazard data. FEMA provides the flood hazard data to support the National Flood Insurance Program. You can use the information to better understand your level of flood risk and type of flooding. The simplest way for you to access the flood hazard data, including the NFHL, is through FEMAs Map Service Center (MSC).If you want to explore the current digital effective flood hazard data in a map, the best tool to use is the NFHL Viewer. From the NFHL Viewer, you may view, download, and print flood maps for your location.The NFHL is made from effective flood maps and Letters of Map Change (LOMC) delivered to communities. NFHL digital data covers over 90 percent of the U.S. population. New and revised data is being added continuously. If you need information for areas not covered by the NFHL data, there may be other FEMA Flood Hazard Products and Services which provide coverage for those areas.A list of the types of data available in the NFHL and information about other ways to access the NFHL may be found in the NFHL GIS Services User Guide.If you need more information about individual tables in the NFHL, the FIRM Database Technical Reference, found at FEMA’s Technical References, includes those details.For step-by-step instructions on how to read a flood map, you may view the How to Read a Flood Insurance Rate Map Tutorial.For more information, please visit the FEMA Flood Map Service Center.

  2. Flood Hazard Area

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Emergency Management Agency (Point of Contact) (2020). Flood Hazard Area [Dataset]. https://catalog.data.gov/dataset/flood-hazard-area
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Description

    The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision (LOMRs) that have been issued against those databases since their publication date. The DFIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper Flood Insurance Rate Maps(FIRMs). The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The NFHL data are derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The specifications for the horizontal control of DFIRM data are consistent with those required for mapping at a scale of 1:12,000. The NFHL data contain layers in the Standard DFIRM datasets except for S_Label_Pt and S_Label_Ld. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all DFIRMs and corresponding LOMRs available on the publication date of the data set.

  3. a

    Data from: Flood Hazard Areas

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • rigis.org
    • +1more
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2022). Flood Hazard Areas [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/edc::flood-hazard-areas/about
    Explore at:
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Environmental Data Center
    Area covered
    Description

    This hosted feature layer has been published in RI State Plane Feet NAD 83.Statewide flood hazard areas compiled from county-based Digital Flood Insurance Rate Map (DFIRM) databases for Rhode Island. The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. TheDFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA), and in this case redistributed by the Rhode Island Geographic Information System (RIGIS) at the request of the Rhode Island Emergency Management Agency.This dataset provides the user with information on the flood risk hazard zones throughout the state of Rhode Island. Note: the above summary is a slightly modified version adapted from source metadata records provided by FEMA. To provide the user with information on the statewide flood risk based on information provided by the Federal Emergency Management Agency (FEMA) in the DFIRM databases created specifically for the five counties of Rhode Island (Bristol, Kent, Newport, Providence, and Washington). This dataset provides information on the likelihood that a flood may occur at a given location in the state. The files and information used to create this dataset were originally provided to the Rhode Island Emergency Management Agency (RIEMA) by FEMA.This information was in the form of DFIRM databases for each of the five RI counties. This information was then redistributed by RIGIS at the request of RIEMA. The information provided by this data is only a subset of the information available in the original DFIRM databases located on the RIGIS website. For a specific county's complete DFIRM database, please visit the RIGIS website and download the appropriate DFIRM database. This metadata record is specific to this dataset and only contains information relevant to this dataset as provided by FEMA the original DFIRM metadata records. These can be found and referenced in the /DOCUMENT folder that is downloaded as part of a DFIRM package for a specific Rhode Island county. Another valuable source of documentation is FEMA's "Guidelines and Specifications for Flood Hazard Mapping Partners". It is currently available online at https://www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping. The Guide offers a tremendous amount of information regarding how DFIRM data are created, and detailed information about the individual files that constitute a DFIRM database.

  4. a

    FEMA Flood Zones

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2023). FEMA Flood Zones [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/FDEP::fema-flood-zones
    Explore at:
    Dataset updated
    Jun 23, 2023
    Dataset authored and provided by
    Florida Department of Environmental Protection
    Area covered
    Description

    FEMA provides access to the National Flood Hazard Layer through a Web Map Service. The National Flood Hazard Layer is a computer database that contains FEMA's flood hazard map data. The data depict flood hazard information and supporting data used to develop the information. The primary hazard classifications are the 1 percent-annual-chance flood event, the 0.2 percent-annual-chance flood event, and areas of minimal flood hazard. Flood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000-scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA's standards for map accuracy. The NFHL data are from FEMA's Digital Flood Insurance Rate Map (DFIRM) databases. New data are added continually. The NFHL also contains changes to DFIRM data made by Letters of Map Revision (LOMRs). The service provides map images geo-referenced to the earth's surface using the North American Datum of 1983, Geodetic Reference System 80 coordinate system.Please reference the metadata for contact information.

  5. National Flood Hazard Layer (NFHL)

    • hifld-geoplatform.hub.arcgis.com
    • data.globalchange.gov
    • +9more
    Updated Feb 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2020). National Flood Hazard Layer (NFHL) [Dataset]. https://hifld-geoplatform.hub.arcgis.com/maps/299e82ea31b94f77a326a9300052daff
    Explore at:
    Dataset updated
    Feb 10, 2020
    Dataset provided by
    Authors
    GeoPlatform ArcGIS Online
    Area covered
    Description

    The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are designed to provide the user with the ability to determine the flood zone, base flood elevation, and floodway status for a particular location. It also has information about the NFIP communities, map panels, cross sections, hydraulic structures, Coastal Barrier Resource System, and base maps such as road, stream, and public land survey data. Through flood studies, FEMA produces Flood Insurance Study Reports, FIRM Panels, and FIRM Databases. FIRM Databases that become effective are incorporated into the NFHL. Updates to the NFHL are issued through Letters of Map Revision (LOMRs) and Letters of Map Amendment (LOMAs). Continuously updated, the NFHL serves as a Digital Flood Insurance Rate Map representing the current effective flood data for those communities where maps have been digitized. NFHL data can be viewed with widely available GIS software, including freely available programs that work with GIS shapefiles. For more information on the NFHL, see the online resources referenced herein. Using base maps: The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. Letter of Map Amendment (LOMA) point locations are approximate. The location of the LOMA is referenced in the legal description of the letter itself. LOMA points can be viewed in the NFHL Interactive Map on the FEMA GeoPlatform.

  6. Flood Hazard Areas (DFIRM) - Statewide

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +1more
    Updated Sep 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2021). Flood Hazard Areas (DFIRM) - Statewide [Dataset]. https://opendata.hawaii.gov/dataset/flood-hazard-areas-dfirm-statewide
    Explore at:
    pdf, geojson, zip, ogc wfs, kml, arcgis geoservices rest api, ogc wms, html, csvAvailable download formats
    Dataset updated
    Sep 18, 2021
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    Office of Planning
    Description

    [Metadata] Flood Hazard Areas for the State of Hawaii as of May, 2021, downloaded from the FEMA Flood Map Service Center, May 1, 2021. The Statewide GIS Program created the statewide layer by merging all county layers (downloaded on May 1, 2021), as the Statewide layer was not available from the FEMA Map Service Center. For more information, please refer to summary metadata: https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf. The National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Datum of 1983.

    For additional information, please summary metadata https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  7. W

    USA Flood Hazard Areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    csv, esri rest +4
    Updated Jul 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). USA Flood Hazard Areas [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-flood-hazard-areas
    Explore at:
    kml, zip, geojson, esri rest, html, csvAvailable download formats
    Dataset updated
    Jul 14, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description
    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.

    Dataset Summary

    Phenomenon Mapped: Flood Hazard Areas
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American Samoa
    Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.
    Publication Date: April 1, 2019

    This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.

    To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.

    A web map featuring this layer is available for you to use.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.
    • Change the layer’s transparency and set its visibility range
    • Open the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.
    • Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas.
    • Add labels and set their properties
    • Customize the pop-up
    ArcGIS Pro
    • Add this layer to a 2d or 3d map. The same scale limit as Online applies in Pro
    • Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.
    • Change the symbology and the attribute field used to symbolize the data
    • Open table and make interactive selections with the map
    • Modify the pop-ups
    • Apply Definition Queries to create sub-sets of the layer
    This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
  8. n

    North Carolina Effective Flood Zones

    • nconemap.gov
    Updated May 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of North Carolina - Emergency Management (2019). North Carolina Effective Flood Zones [Dataset]. https://www.nconemap.gov/maps/a178aae74ee347d786e853e5a442eea2
    Explore at:
    Dataset updated
    May 6, 2019
    Dataset authored and provided by
    State of North Carolina - Emergency Management
    Area covered
    Description

    North Carolina Effective Flood zones: In 2000, the Federal Emergency Management Agency (FEMA) designated North Carolina a Cooperating Technical Partner State, formalizing an agreement between FEMA and the State to modernize flood maps. This partnership resulted in creation of the North Carolina Floodplain Mapping Program (NCFMP). As a CTS, the State assumed primary ownership and responsibility of the Flood Insurance Rate Maps (FIRMs) for all North Carolina communities as part of the National Flood Insurance Program (NFIP). This project includes conducting flood hazard analyses and producing updated, Digital Flood Insurance Rate Maps (DFIRMs). Floodplain management is a process that aims to achieve reduced losses due to flooding. It takes on many forms, but is realized through a series of federal, state, and local programs and regulations, in concert with industry practice, to identify flood risk, implement methods to protect man-made development from flooding, and protect the natural and beneficial functions of floodplains. FIRMs are the primary tool for state and local governments to mitigate areas of flooding. Individual county databases can be downloaded from https://fris.nc.gov Updated Jan 17th, 2025.

  9. a

    Hazards Flood Zone

    • gis.data.alaska.gov
    • data1-msb.opendata.arcgis.com
    • +1more
    Updated Jan 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matanuska-Susitna Borough (2020). Hazards Flood Zone [Dataset]. https://gis.data.alaska.gov/maps/d2bd4dc185cc401da508188f03d07a70
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset authored and provided by
    Matanuska-Susitna Borough
    Area covered
    Description

    The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth?s surface using the State Plane coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000.

  10. a

    NHC Flood Mapping - River and Lakes no depth rasters

    • hub.arcgis.com
    Updated Oct 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Regional District of Central Okanagan (2022). NHC Flood Mapping - River and Lakes no depth rasters [Dataset]. https://hub.arcgis.com/documents/a98cced4b97747ec8390ebe6c7e11309
    Explore at:
    Dataset updated
    Oct 4, 2022
    Dataset authored and provided by
    Regional District of Central Okanagan
    Description

    This data layer is part of a collection of GIS data created for the Okanagan Mainstem Floodplain Mapping Project. Notes below apply to the entire project data set.General Notes1. Please refer to the Disclaimer further below.2. Please review the associated project reports before using the floodplain maps: Northwest Hydraulic Consultants Ltd. (NHC). 2020. ‘Okanagan Mainstem Floodplain Mapping Project’. Report prepared for the Okanagan Basin Water Board (OBWB). 31 March 2020. NHC project number 3004430. Northwest Hydraulic Consultants Ltd. (NHC). 2021. ‘Okanagan Mainstem Floodplain Mapping Project – Development of CGVD1928 Floodplain Mapping’. Letter report prepared for the Okanagan Basin Water Board (OBWB). 30 March 2021. NHC project number 3006034.Northwest Hydraulic Consultants Ltd. (NHC). 2022. ‘Supplemental to the Okanagan Mainstem Floodplain Mapping Project – Current Operations Flood Construction Levels for Okanagan and Wood-Kalamalka Lakes’. Report prepared for the Okanagan Basin Water Board (OBWB). Final. 16 August 2022. NHC project number 3006613.3. These floodplain mapping layers delineate flood inundation extents under the specific flood events. Tributaries are not included in mapping.4. The mapped inundation is based on the calculated water level. Freeboard, wind effects, and wave effects have been added to the calculated water level where noted.5. Where noted, a freeboard allowance of 0.6 m has been added to the calculated flood water level. It has been added to account for local variations in water level and uncertainty in the underlying data and modelling.6. Where noted, the FCL (or COFCL) included in lake mapping layers includes an allowance for wind setup and wave runup based on co-occurrence of the seasonal 200-year wind event. The wind and wave effects extend 40 m shoreward to delineate the expected limit of wave effects. Beyond this limit the FCL (or COFCL) is based on inundation of the flood event without wave effects. Wave effects have been calculated based on generalized shoreline profile and roughness for each shoreline reach. Site specific runup analysis by a Qualified Registrant may be warranted to refine the generalized wave effects shown, which could increase or decrease the FCL (or COFCL) by as much as a metre.7. Underlying hydraulic analysis assumes channel and shoreline geometry is stationary. Erosion, deposition, degradation, and aggradation are expected to occur and may alter actual observed flood levels and extents. Obstructions, such as log-jams, local storm water inflows or other land drainage, groundwater, or tributary flows may cause flood levels to exceed those indicated on the maps.8. The Okanagan floodplain is subject to persistent ponding due to poor drainage. Persistent ponding is not covered by the flood inundation mapping.9. For flood level maps (water level and inundation extents):a. Layers for each flood scenario describe inundation extents, water surface elevations, and depths.b. The calculated water level has been extended perpendicular to flow across the floodplain; thus mapping inundation of isolated areas regardless of likelihood of inundation; whether it be from dike failure, seepage, or local inflows. Distant isolated areas may be conservatively mapped as inundated. Site specific judgement by a Qualified Professional is required to determine validity of isolated inundation.c. Filtering was used to remove isolated areas smaller than 100 m2. Holes in the inundation extent with areas less than 100 m2 were also removed. Isolated areas larger than 100 m2 are included in GIS data layers and are shown on maps if they are within 40 metres of direct inundation or within 40 metres of other retained polygons.d. Okanagan Dam breach, dam overtopping, or overtopping and breaching of Penticton Beach were not modelled. Inundation downstream of the Okanagan Dam on the left bank floodplain is based on river modelling with the assumption that Okanagan Lake levels will not overtop Lakeshore Drive and adjacent high ground. For the design flood scenarios, inundation mapping on the right bank of the Okanagan River from the Okanagan Dam downstream to the Highway 97 bridge and Burnaby Avenue is based on additional lake and river modelling. For other flood scenarios, river and lake inundation has been mapped separately and has not been integrated on the right bank. Inundation mapping on the right bank is based on river modelling as far as the most upstream modelled river cross section.10. For flood hazard maps (depth and velocity):a. Layers describe flood water depths and velocities. Depths and velocities are based on the maximum values from three modelled scenarios: all dikes removed, left bank dikes removed, and right bank dikes removed. Depths do not include freeboard.b. All hazard layers were modelled with the same parameters and boundary conditions as the design flood.11. Flood modelling and mapping is based on a digital elevation model (DEM) with the following coordinate system and datum specifications: Universal Transverse Mercator Zone 11-N (UTM Zone 11-N), North American Datum 1983 Canadian Spatial Reference System epoch 2002.0 (NAD83 CSRS (2002.0)), Canadian Geodetic Vertical Datum 2013 (CGVD2013), Canadian Gravimetric Geoid model of 2013 (CGG2013). FCL values are presented on the maps in both CGVD2013 and CGVD1928 vertical datums. CGVD1928 values are based on the following specifications: NAD83 CSRS (2002.0), CGVD1928, Height Transformation version 2.0 epoch 1997 (HTv2.0 (1997)). COFCL and COFCL values are presented only in CGVD2013.12. The accuracy of simulated flood levels is limited by the reliability and extent of water level, flow, and climatic data. The accuracy of the floodplain extents is limited by the accuracy of the design flood flow, the hydraulic model, and the digital surface representation of local topography. Localized areas above or below the mapped inundation maybe generalized. Therefore, floodplain maps should be considered an administrative tool that indicates flood elevations and floodplain boundaries for a designated flood. A qualified professional is to be consulted for site-specific engineering analysis.13. Industry best practices were followed to generate the floodplain maps. However, actual flood levels and extents may vary from those shown. OBWB and NHC do not assume any liability for variations of flood levels and extents from that shown.Data Sources Design flood events are based on hydrologic modelling of the Okanagan River watershed. The hydraulic response is based on a combination of 1D and 2D numerical models developed by NHC using HEC-RAS software, and NHC SWAN models. The hydraulic models are calibrated to the 2017 flood event and validated to the 2018 flood event; due to limits on data availability the hydrologic model is calibrated using data from 1980-2010. The digital elevation model (DEM) used to develop the model and mapping is based on Lidar data collected from March to November 2018 and provided by Emergency Management BC (EMBC), channel survey conducted by WSP in March, April, and June 2019, and additional survey data. See accompanying report for details NHC (2020).DisclaimerThis document has been prepared by Northwest Hydraulic Consultants Ltd. for the benefit of Okanagan Basin Water Board, Regional District of North Okanagan, Regional District of Central Okanagan, Regional District of Okanagan-Similkameen, Okanagan Nation Alliance for specific application to the Okanagan Mainstem Floodplain Mapping Project, Okanagan Valley, British Columbia, Canada (Ellison, Wood, Kalamalka, Okanagan, Skaha, Vaseux, and Osoyoos lakes and Okanagan River from Okanagan Lake to Osoyoos Lake). The information and data contained herein represent Northwest Hydraulic Consultants Ltd. best professional judgment in light of the knowledge and information available to Northwest Hydraulic Consultants Ltd. at the time of preparation, and was prepared in accordance with generally accepted engineering practices.Except as required by law, this document and the information and data contained herein are to be treated as confidential and may be used and relied upon only by Okanagan Basin Water Board, Regional District of North Okanagan, Regional District of Central Okanagan, Regional District of Okanagan-Similkameen, Okanagan Nation Alliance, its officers and employees. Northwest Hydraulic Consultants Ltd. denies any liability whatsoever to other parties who may obtain access to this document for any injury, loss or damage suffered by such parties arising from their use of, or reliance upon, this report or any of its contents.Data Layer List and Descriptions<!--· River / Lake Model Boundary -River / Lake Model Boundary (NHC): Boundary between Okanagan River and Okanagan Lake modelling and mapping areas for design and flood mapping.Recommended Design Flood (gates open): Ellison, Skaha, Vaseux, and Osoyoos lakeso Lake Shoreline Flood Construction Level (FCL) Zone – Recommended Design Flood with Freeboard and Wave Effect (NHC): Zone defined based on approximate shoreline and the wave breaking boundary plus a buffer; FCLs defined by zone along shoreline; shoreline FCLs take precedence over lake inundation FCLs.o Lake Flood Construction Level (FCL) Zone (Inundation Extent) – Recommended Design Flood with Freeboard (NHC): Design flood inundation extent with freeboard. Design event varies by lake, plus wind setup, plus mid-century climate change; plus freeboard 0.6m.o Lake Inundation Extent – Recommended Design Flood without Freeboard (NHC): Design flood inundation extent without freeboard. Design event varies by lake, plus wind setup, plus mid-century climate change.o Depth Grids§ Ellison Lake Depth – Recommended Design without Freeboard (NHC): ELLISON LAKE: 200-YEAR MID-CENTURY. Design flood depth without freeboard. Design

  11. s

    Flood Hazard Areas - 1% Annual Chance

    • data.stlouisco.com
    • hub.arcgis.com
    • +3more
    Updated Jul 8, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saint Louis County GIS Service Center (2015). Flood Hazard Areas - 1% Annual Chance [Dataset]. https://data.stlouisco.com/maps/2082093545ed4f9589236a5ce9bcc36c
    Explore at:
    Dataset updated
    Jul 8, 2015
    Dataset authored and provided by
    Saint Louis County GIS Service Center
    Area covered
    Description

    Open Data. Flood Hazard Areas in St. Louis County, Missouri. Flood Hazard Areas defined by FEMA as 1% annual chance of flooding and 26% chance over the life of a 30-year mortgage. These data were officially adopted by FEMA as of February 2015. Link to Metadata.

  12. FEMA's National Flood Hazard Layer ND

    • hub.arcgis.com
    • disasters.amerigeoss.org
    Updated Sep 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FEMA (2018). FEMA's National Flood Hazard Layer ND [Dataset]. https://hub.arcgis.com/maps/FEMA::femas-national-flood-hazard-layer-nd
    Explore at:
    Dataset updated
    Sep 24, 2018
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    FEMA
    Area covered
    Description

    On January 25, 2018 FEMA replaced this map with a new NFHL map with additional functionality which allows users to print official flood maps. On April 1, 2018 this map and NFHL link will no longer function. Please update your bookmark to https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd. For more information on NFHL data availability, please visit the NFHL GIS Services page at https://hazards.fema.gov/femaportal/wps/portal/NFHLWMSAs of August 1, 2017 all FEMA systems will require the use of the “https” protocol, and “http” links will no longer function. This may impact NFHL web services. The FEMA GeoPlatform (including this map) will not be affected by this change. For more information on how NFHL GIS services will be impacted, please visit the NFHL GIS Services page at https://hazards.fema.gov/femaportal/wps/portal/NFHLWMS.An NFHL FIRMette print service is now available HERE. (For a video tutorial, click here.)OverviewThe National Flood Hazard Layer (NFHL) dataset represents the current effective flood data for the country, where maps have been modernized. It is a compilation of effective Flood Insurance Rate Map (FIRM) databases and Letters of Map Change (LOMCs). The NFHL is updated as studies go effective. For more information, visit FEMA's Map Service Center (MSC). Base Map ConsiderationsThe default base map is from a USGS service and conforms to FEMA's specification for horizontal accuracy. This base map from The National Map (TNM) consists of National Agriculture Imagery Program (NAIP) and high resolution orthoimagery (HRO) that combine the visual attributes of an aerial photograph with the spatial accuracy and reliability of a map. This map should be considered the best online resource to use for official National Flood Insurance Program (NFIP) purposes when determining locations in relation to regulatory flood hazard information. If a different base map is used with the NFHL, the accuracy specification may not be met and the resulting map should be used for general reference only, and not official NFIP purposes. Users can download a simplified base map from the USGS service via: https://viewer.nationalmap.gov/services/ For the specifics of FEMA’s policy on the use of digital flood hazard data for NFIP purposes see: http://www.fema.gov/library/viewRecord.do?id=3235Letter of Map Amendment (LOMA) pointsLOMA point locations are approximate. The location of the LOMA is referenced in the legal description of the letter itself. Click the LOMA point for a link to the letter (use the arrows at the top of the popup window to bring up the LOMA info, if needed).This LOMA database may include LOMAs that are no longer effective. To be certain a particular LOMA is currently valid, please check relevant documentation at https://msc.fema.gov/ . Relevant documents can be found for a particular community by choosing to "Search All Products", and finding the community by State and County. Documents include LOMAs found in the "Effective Products" and "LOMC" folders, as well as Revalidations (those LOMAs which are still considered to be effective after a map is revised).Updates3/27/2017 - Updated all references to https to prevent issues with mixed content.5/11/2016 - Added link to NFHL FIRMette Print Service. Updated LOMA and CBRS popup notes.2/20/2014 - Created a General Reference map for use when the USGS base map service is down. Renamed this map to "Official".Further InformationSpecific questions about FEMA flood maps can be directed to FEMAMapSpecialist@riskmapcds.comFor more flood map data, tool, and viewing options, visit the FEMA NFHL page. Information about connecting to web map services (REST, WMS, WFS) can be found here.Several fact sheets are available to help you learn more about FEMA’s NFHL utility: National Flood Hazard Layer (NFHL) GIS Services Users GuideNational Flood Hazard Layer (NFHL): New Products and Services for FEMA's Flood Hazard Map DataMoving to Digital Flood Hazard Information Standards for Flood Risk Analysis and MappingNFHL GIS Data: Perform Spatial Analyses and Make Custom Maps and Reports

  13. a

    FEMA All Flood Hazard Areas

    • it-gis-hub-moco.hub.arcgis.com
    • data-moco.opendata.arcgis.com
    Updated Aug 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montgomery County, Texas IT-GIS (2022). FEMA All Flood Hazard Areas [Dataset]. https://it-gis-hub-moco.hub.arcgis.com/maps/MOCO::fema-all-flood-hazard-areas
    Explore at:
    Dataset updated
    Aug 10, 2022
    Dataset authored and provided by
    Montgomery County, Texas IT-GIS
    Area covered
    Description

    This dataset comes from the FEMA S_Fld_Haz_Ar table. The S_Fld_Haz_Ar table contains information about the flood hazards within the flood risk project area. A spatial file with location information also corresponds with this data table. These zones are used by FEMA to designate the SFHA and for insurance rating purposes. These data are the regulatory flood zones designated by FEMA. A spatial file with location information also corresponds with this data table.This information is needed for the following tables in the FIS report: Flooding Sources Included in this FIS report, and Summary of Hydrologic and Hydraulic Analyses.The spatial elements representing the flood zones are polygons. The entire area of the jurisdiction(s) mapped by the FIRM should have a corresponding flood zone polygon. There is one polygon for each contiguous flood zone designated.FEMA Regulatory Floodway are flood zone polygons marked as a regulatory floodway.FEMA 100 year are flood zone polygons where there is a 1% Annual Chance, also known as the 100 year.FEMA 500 year are flood zone polygons where there is a 0.2% Annual Chance, also known as the 500 year.FEMA minimal flood hazard zone polygons.This map is not intended for insurance rating purposes and is for information only. This map is a representation and approximation of the relative location of geographic information, land marks and physical addresses. The map may not be 100% accurate in locating your address. The floodplains shown on this mapping tool are those delineated on the Federal Emergency Management Agency’s (FEMA) Digital Flood Insurance Rate Map (DFIRM or floodplain map) for Montgomery County. This map is not an official FEMA Digital Flood Insurance Rate Map. The effective DFIRMs are produced, maintained, and published by FEMA and not by Montgomery County. Official determinations are provided by FEMA.

  14. Floodplain FIRM Panels

    • catalog.data.gov
    • hub.arcgis.com
    • +3more
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Emergency Management Agency (2025). Floodplain FIRM Panels [Dataset]. https://catalog.data.gov/dataset/floodplain-firm-panels
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Description

    Location and attributes for FIRM hardcopy map panels. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. FIRM panels must not overlap or have gaps within a study. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction.

  15. n

    North Carolina Flood Hazard Area Effective

    • nconemap.gov
    • hub.arcgis.com
    • +3more
    Updated Dec 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of North Carolina - Emergency Management (2019). North Carolina Flood Hazard Area Effective [Dataset]. https://www.nconemap.gov/datasets/3a2a84ccaa824fb6a87087553bf25f92
    Explore at:
    Dataset updated
    Dec 5, 2019
    Dataset authored and provided by
    State of North Carolina - Emergency Management
    Area covered
    Description

    North Carolina Effective Flood Areas: In 2000, the Federal Emergency Management Agency (FEMA) designated North Carolina a Cooperating Technical Partner State, formalizing an agreement between FEMA and the State to modernize flood maps. This partnership resulted in creation of the North Carolina Floodplain Mapping Program (NCFMP). As a CTS, the State assumed primary ownership and responsibility of the Flood Insurance Rate Maps (FIRMs) for all North Carolina communities as part of the National Flood Insurance Program (NFIP). This project includes conducting flood hazard analyses and producing updated, Digital Flood Insurance Rate Maps (DFIRMs). Floodplain management is a process that aims to achieve reduced losses due to flooding. It takes on many forms, but is realized through a series of federal, state, and local programs and regulations, in concert with industry practice, to identify flood risk, implement methods to protect man-made development from flooding, and protect the natural and beneficial functions of floodplains. FIRMs are the primary tool for state and local governments to mitigate areas of flooding. Individual county databases can be downloaded from https://fris.nc.gov.

    The Flood Hazard Area is a polygon feature class representing the area within the flood mapping boundaries defined by the engineering models for the 100 year, 500 year and floodway. The Flood Hazard Area spatial table contains information about the flood hazard within the study area. These zones are used by FEMA to designate the Special Flood Hazard Area (SFHA), identify areas of coastal high hazard flooding, and for insurance rating purposes. These data are the flood hazard areas that are or will be depicted on the FIRM. Updated Jan 17th, 2025.

  16. n

    Data from: Flood Hazard Areas

    • nconemap.gov
    • hub.arcgis.com
    Updated May 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of North Carolina - Emergency Management (2019). Flood Hazard Areas [Dataset]. https://www.nconemap.gov/datasets/NCEM-GIS::flood-hazard-areas
    Explore at:
    Dataset updated
    May 6, 2019
    Dataset authored and provided by
    State of North Carolina - Emergency Management
    Area covered
    Description

    North Carolina Effective Flood zones: In 2000, the Federal Emergency Management Agency (FEMA) designated North Carolina a Cooperating Technical Partner State, formalizing an agreement between FEMA and the State to modernize flood maps. This partnership resulted in creation of the North Carolina Floodplain Mapping Program (NCFMP). As a CTS, the State assumed primary ownership and responsibility of the Flood Insurance Rate Maps (FIRMs) for all North Carolina communities as part of the National Flood Insurance Program (NFIP). This project includes conducting flood hazard analyses and producing updated, Digital Flood Insurance Rate Maps (DFIRMs). Floodplain management is a process that aims to achieve reduced losses due to flooding. It takes on many forms, but is realized through a series of federal, state, and local programs and regulations, in concert with industry practice, to identify flood risk, implement methods to protect man-made development from flooding, and protect the natural and beneficial functions of floodplains. FIRMs are the primary tool for state and local governments to mitigate areas of flooding. Individual county databases can be downloaded from https://fris.nc.gov Updated Jan 17th, 2025.

  17. d

    National Flood Hazard - FIRM Panels

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisville/Jefferson County Information Consortium (2023). National Flood Hazard - FIRM Panels [Dataset]. https://catalog.data.gov/dataset/national-flood-hazard-firm-panels-17159
    Explore at:
    Dataset updated
    Apr 13, 2023
    Dataset provided by
    Louisville/Jefferson County Information Consortium
    Description

    The S_FIRM_Pan table contains information about the FIRM panel area. A spatial file with location information also corresponds with this data table. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. Panel boundaries are generally derived from USGS DOQQ boundaries. As a result, the panels are generally rectangular. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction. This information is needed for the FIRM Panel Index and the following tables in the FIS report: Listing of NFIP Jurisdictions, Levees, Incorporated Letters of Map Change, and Coastal Barrier Resources System Information. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. Panel boundaries are generally derived from USGS DOQQ boundaries. As a result, the panels are generally rectangular. FIRM panels must not overlap or have gaps within a study. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction. This information is needed for the FIRM Panel Index and the following tables in the FIS report: Listing of NFIP Jurisdictions, Levees, Incorporated Letters of Map Change, and Coastal Barrier Resources System Information.Flood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy. The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs). The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.

  18. a

    FEMA Flood Zones

    • hub.arcgis.com
    • data.hartford.gov
    • +1more
    Updated Sep 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Hartford (2024). FEMA Flood Zones [Dataset]. https://hub.arcgis.com/maps/hartfordgis::fema-flood-zones
    Explore at:
    Dataset updated
    Sep 13, 2024
    Dataset authored and provided by
    City of Hartford
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    According to FEMA the definition of a flood zone is a "geographic areas that FEMA has defined according to varying levels of flood risk and type of flooding. These zones are depicted on the published Flood Insurance Rate Map (FIRM) or Flood Hazard Boundary Map (FHBM)."

  19. g

    IE GSI Groundwater Flood Probability and Historic Flood Maps 20k Ireland...

    • geohive.ie
    • ga.geohive.ie
    Updated Jul 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    geohive_curator (2020). IE GSI Groundwater Flood Probability and Historic Flood Maps 20k Ireland (ROI) ITM [Dataset]. https://www.geohive.ie/maps/f8dc65ff853a407dbd8aac24aa4a7e5d
    Explore at:
    Dataset updated
    Jul 9, 2020
    Dataset authored and provided by
    geohive_curator
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Groundwater is the water that soaks into the ground from rain and can be stored beneath the ground. Groundwater floods occur when the water stored beneath the ground rises above the land surface. The Historic Groundwater Flood Map shows the observed peak flood extents caused by groundwater in Ireland. This map was made using satellite images (Copernicus Programme Sentinel-1), field data, aerial photos, as well as flood records from the past. Most of the data was collected during the flood events of winter 2015 / 2016, as in most areas this data showed the largest floods on record.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. Vector data portray the world using points, lines, and polygons (area). The floods are shown as polygons. Each polygon has info about the type of flood, the data source, and the area of the flood.The flood extents were calculated using data and techniques with various precision levels, and as such, it may not show the true historic peak flood extents.The Winter 2015/2016 Surface Water Flooding map shows fluvial (rivers) and pluvial (rain) floods, excluding urban areas, during the winter 2015/2016 flood event, and was developed as a by-product of the historic groundwater flood map.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. The floods are shown as polygons. Each polygon has info about the type of flood, the data source, and the area of the flood.The flood extents were made using remote sensing images (Copernicus Programme Sentinel-1), which covered any site in Ireland every 4-6 days. As such, it may not show the true peak flood extents.The Synthetic Aperture Radar (SAR) Seasonal Flood Maps shows observed peak flood extents which took place between Autumn 2015 and Summer 2021. The maps were made using Synthetic Aperture Radar (SAR) images from the Copernicus Programme Sentinel-1 satellites. SAR systems emit radar pulses and record the return signal at the satellite. Flat surfaces such as water return a low signal. Based on this low signal, SAR imagery can be classified into non-flooded and flooded (i.e. flat) pixels.Flood extents were created using Python 2.7 algorithms developed by Geological Survey Ireland. They were refined using a series of post processing filters. Please read the lineage for more information.The flood maps shows flood extents which have been observed to occur. A lack of flooding in any part of the map only implies that a flood was not observed. It does not imply that a flood cannot occur in that location at present or in the future.This flood extent are to the scale 1:20,000. This means they should be viewed at that scale. When printed at that scale 1cm on the maps relates to a distance of 200m.They are vector datasets. Vector data portray the world using points, lines, and polygons (areas). The flood extents are shown as polygons. Each polygon has information on the confidence of the flood extent (high, medium or low), a flood id and a unique id.The Groundwater Flooding High Probability map shows the expected flood extent of groundwater flooding in limestone regions for annual exceedance probabilities (AEP’s) of 10%, which correspond with a return period of every 10 years. The map was created using groundwater levels measured in the field, satellite images and hydrological models.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. The floods are shown as polygons. Each polygon has info on the data source, and the area of the flood.The flood extents were calculated using remote sensing data and hydrological modelling techniques with various precision levels. As such, it should be used with caution.The Groundwater Flooding Medium Probability map shows the expected flood extent of groundwater flooding in limestone regions for annual exceedance probabilities (AEP’s) of 1%, which correspond with a return period of every 100 years. The map was created using groundwater levels measured in the field, satellite images and hydrological models.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. The floods are shown as polygons. Each polygon has info on the data source, and the area of the flood.The flood extents were calculated using remote sensing data and hydrological modelling techniques with various precision levels. As such, it should be used with caution.The Groundwater Flooding Low Probability map shows the expected flood extent of groundwater flooding in limestone regions for annual exceedance probabilities (AEP’s) of 0.1%, which correspond with a return period of every 1000 years.The map was created using groundwater levels measured in the field, satellite images and hydrological models.This map is to the scale 1:20,000. This means it should be viewed at that scale. When printed at that scale 1cm on the map relates to a distance of 200m.The map is a vector dataset. Vector data portray the world using points, lines, and polygons (area). The floods are shown as polygons. Each polygon has info on the data source, and the area of the flood.The flood extents were calculated using remote sensing data and hydrological modelling techniques with various precision levels. As such, it should be used with caution.

  20. a

    FEMA National Flood Hazard Layer

    • vla-gohsep.hub.arcgis.com
    • virtualla.la.gov
    • +1more
    Updated Jun 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). FEMA National Flood Hazard Layer [Dataset]. https://vla-gohsep.hub.arcgis.com/maps/d8d0c171431a42648fea53a9d8d9cb05
    Explore at:
    Dataset updated
    Jun 20, 2018
    Dataset authored and provided by
    NAPSG Foundation
    Area covered
    Description

    THIS LAYER IS HOSTED BY FEMA, not NAPSG Foundation. We are simply pointing to their layer with this ArcGIS Online item. The National Flood Hazard Layer (NFHL) dataset represents the current effective flood data for the country, where maps have been modernized. It is a compilation of effective Flood Insurance Rate Map (FIRM) databases and Letters of Map Change (LOMCs). The NFHL is updated as studies go effective. For more information, visit FEMA's Map Service Center (MSC). You can view this information in a standalone viewer here: https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cdREST URL: https://hazards.fema.gov/gis/nfhl/rest/services/public/NFHL/MapServerBase Map ConsiderationsThe default base map is from an ESRI service and conforms to FEMA's specification for horizontal accuracy. This base map is composed of the orthoimagery used when the Flood Insurance Rate Maps (FIRMs) were initially created combined with standard imagery products managed by ESRI. This map should be considered the best online resource to use for official National Flood Insurance Program (NFIP) purposes when determining locations in relation to regulatory flood hazard information. If a different base map is used with the NFHL, the accuracy specification may not be met and the resulting map should be used for general reference only, and not official NFIP purposes.Further InformationFor more flood map data, tool, and viewing options, visit the FEMA NFHL page.Several fact sheets are available to help you learn more about FEMA’s NFHL utility: National Flood Hazard Layer (NFHL) GIS Services Users GuideNational Flood Hazard Layer (NFHL): New Products and Services for FEMA's Flood Hazard Map DataNFHL GIS Data: Perform Spatial Analyses and Make Custom Maps and Reports

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Chesapeake Geoplatform (2024). National Flood Hazard Layer [Dataset]. https://hamhanding-dcdev.opendata.arcgis.com/maps/ChesBay::nodes/about

National Flood Hazard Layer

Explore at:
Dataset updated
Apr 9, 2024
Dataset authored and provided by
Chesapeake Geoplatform
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Area covered
Description

The National Flood Hazard Layer (NFHL) is a geospatial database that contains current effective flood hazard data. FEMA provides the flood hazard data to support the National Flood Insurance Program. You can use the information to better understand your level of flood risk and type of flooding. The simplest way for you to access the flood hazard data, including the NFHL, is through FEMAs Map Service Center (MSC).If you want to explore the current digital effective flood hazard data in a map, the best tool to use is the NFHL Viewer. From the NFHL Viewer, you may view, download, and print flood maps for your location.The NFHL is made from effective flood maps and Letters of Map Change (LOMC) delivered to communities. NFHL digital data covers over 90 percent of the U.S. population. New and revised data is being added continuously. If you need information for areas not covered by the NFHL data, there may be other FEMA Flood Hazard Products and Services which provide coverage for those areas.A list of the types of data available in the NFHL and information about other ways to access the NFHL may be found in the NFHL GIS Services User Guide.If you need more information about individual tables in the NFHL, the FIRM Database Technical Reference, found at FEMA’s Technical References, includes those details.For step-by-step instructions on how to read a flood map, you may view the How to Read a Flood Insurance Rate Map Tutorial.For more information, please visit the FEMA Flood Map Service Center.

Search
Clear search
Close search
Google apps
Main menu