Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This research study considers one such urban technology, namely utilising digital twins in cities. Digital twin city (DTC) technology is investigated to identify the gap in soft infrastructure data inclusion in DTC development. Soft infrastructure data considers the social and economic systems of a city, which leads to the identification of socio-economic security (SES) as the metric of investigation. The study also investigated how GIS mapping of the SES system in the specific context of Hatfield informs a soft infrastructure understanding that contributes to DTC readiness. This research study collected desk-researched secondary data and field-researched primary data in GIS using ArcGIS PRO and the Esri Online Platform using ArcGIS software. To form conclusions, grounded theory qualitative analysis and descriptive statistics analysis of the spatial GIS data schema data sets were performed.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
TwitterHEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) Solutions market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market, estimated at $15 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a Compound Annual Growth Rate (CAGR) of approximately 8%. This growth is attributed to several key factors. Firstly, the rising need for precise spatial data analysis and visualization across industries like agriculture (precision farming), oil & gas (resource exploration and management), and construction (infrastructure planning and development) is driving demand. Secondly, advancements in GIS software and services, including cloud-based solutions and AI-powered analytics, are enhancing efficiency and accessibility. Thirdly, government initiatives promoting smart cities and infrastructure development are further boosting market expansion. The market is segmented by application (Agriculture, Oil & Gas, AEC, Transportation, Mining, Government, Healthcare, Others) and type (Software, Services), with software solutions currently holding a larger market share due to increasing digitization and data-driven decision-making. North America and Europe are currently the leading regional markets, benefiting from established infrastructure and high technology adoption rates, but Asia-Pacific is poised for significant growth driven by rapid urbanization and infrastructure development. Despite the promising growth trajectory, certain challenges remain. High initial investment costs for GIS software and implementation can be a barrier to entry for smaller businesses. Furthermore, the need for skilled professionals to effectively utilize and manage GIS data poses a considerable constraint. However, the ongoing development of user-friendly interfaces and accessible training programs is mitigating this issue. The competitive landscape is characterized by a mix of established players like ESRI, Hexagon, and Pitney Bowes, alongside emerging technology providers. These companies are actively investing in R&D and strategic partnerships to maintain their competitive edge and capitalize on the market's expansion. The long-term outlook for the GIS solutions market remains positive, with continuous innovation and expanding applications across various sectors paving the way for sustained growth throughout the forecast period.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
Facebook
TwitterProbability of Development, Northeast U.S. is one of a suite of products from the Nature’s Network project. Nature’s Network is a collaborative effort to identify shared priorities for conservation in the Northeast, considering the value of fish and wildlife species and the natural areas they inhabit.This index represents the integrated probability of development occurring sometime between 2010 and 2080 at the 30 m cell level. It was based on models of historical patterns of urban growth in the Northeast, including the type (low intensity, medium intensity and high intensity), amount and spatial pattern of development, and incorporates the influence of factors such as geophysical conditions (e.g., slope, proximity to open water), existing secured lands, and proximity to roads and urban centers. The projected amount of new development is downscaled from county level forecasts based on a U.S. Forest Service 2010 Resources Planning Act (RPA) assessment. A complementary product, Probability of Development, 2030, Northeast U.S., estimates the probability of development over a shorter time-scale.Note: based on revisions of the sprawl model, this version was revised in July 2017 to better reflect relatively higher probabilities of development in close vicinity to roads, which is most evident in rural areas.Description and DerivationThe derivation of the integrated probability of development layer was complex. Please consult the detailed technical documentation for a full description of the background data used, the computation of integrated probabilities from a stochastic model, and information about the related urban growth model. The following is a summary of the five major steps of the derivation: 1) Determining historical patterns of growthTo understand how past patterns of development have occurred, historical data from NOAA (for Maine and Massachusetts) and the Chesapeake Bay Watershed Landcover Data Series were obtained for the years 1984 (Chesapeake Bay only), 1996, and 2006. The data were used to model the occurrence of six different development transition types: New growthundeveloped to low-intensity (20-49% impervious surface; e.g., single-family homes)undeveloped to medium-intensity (50-79% impervious surface; e.g., small-lot single-family homes)undeveloped to high-intensity (80-100% impervious surface; e.g., apartment complexes and commercial/industrial development) Intensificationlow- to medium-intensitylow- to high-intensitymedium- to high-intensity Separate models were developed to represent development patterns at model points representing landscapes differing along two dimensions: intensity of development and amount of open water. Predictor variables in the models account for the intensity of existing development and landscape context (e.g. intensity and distance of nearest roads, amount of open water). Analysis of the historical data was based on dividing the landscape into “training windows,” 15km on a side, to determine the historical distribution of transition types and the total amount of historical development. 2) Application to current landscapesFuture patterns of development were projected based on the observed historical patterns. As the first step in this process, the entire Northeast was subdivided into 5km “application panes,” each of which was the center pane of a (3 x 3) “application window”, 15 km on a side. Each of these overlapping application windows was then matched to the three most similar training windows on the basis of intensity of development from the UMass integrated landcover layer, (derived in turn from the 2011 National Landcover Database and other sources), as well as geographic proximity, amount of open water, and density of roads. . For each application window, according to how it mapped on to the dimensions of development and open water modelled above, the relative probability of each of the six development transition types was determined on a scale of 30m cells. 3) Predictions for changing land-useFuture urban acreage by county was predicted as part of an assessment for the U.S. Forest Service 2010 Resources Planning Act. The derivation of this product, the new growth forecasted for the 70 years between 2010 and 2080 was transformed into demand in units of 30m cells. Demand for each county (or census Core Based statistical Area, where relevant) was allocated to the corresponding application windows based on the average of the total amount of historical development in the three matched training windows. 4) Combining models of past and predictions for the futureThe relative probability of a transition type occurring in each cell in a window was used to distribute the allocated demand of new growth throughout the window. The result was an actual probability of development for the transition occurring sometime between 2010- 2080 at the 30 m cell level. Already existing urban land-use was intensified (i.e., transitions 4-6) in proportion to historic patterns determined from the matched training windows, and distributed according to the probability of those transition types across the cells in the window. The combining of probabilities and demand to distribute development to cells was done for each transition type in turn; thus, each cell received a separate probability of being developed through each of the six transition types. Through the application of this process in every application window, an actual probability of development was determined for each cell with reference to nine slightly different contexts corresponding to each of the overlapping windows in which the pane was situated. 5) Smoothing and integrationAn additional step was used to create a smooth and continuous probability of development surface, not subject to abrupt differences along arbitrary boundaries. Cell by cell, actual probabilities of development from each of the overlapping windows were combined such that the closer to a window’s center a cell was located, the more weight the probability derived from it was given. Consequently, each cell had one weighted average probability that was part of a continuous probability of development surface for each transition type. Finally, the probability of development by each of six transition types was integrated for each cell. More weight was given to new growth, such that the probability of undeveloped land becoming urban had more impact than the probability of an intensification of development. The final product is a single layer of the integrated probability of development by 2080, extending across the entire Northeast on the scale of 30 m cells.Known Issues and Uncertainties As with any project carried out across such a large area, the Probability of Development dataset is subject to limitations. The results by themselves are not a prescription for on-the-ground action; users are encouraged to verify, with field visits and site-specific knowledge, the value of any areas identified in the project. Known issues and uncertainties include the following:Although this index is a true probability, it is best used in a relative manner to compare values from one location to anotherThe GIS data upon which this product was based, especially the National Land Cover Dataset (NLCD), are imperfect. Errors of both omission and commission affect the mapping of current development and in turn, models of the probability of future development. Likewise, the forecasts in the 2010 Resources Planning Act assessment, the basis of the projected demand for new growth, contains uncertainties. While the model is anticipated to generally correctly indicate where development is likely to occur, predictions at the cell level are not expected to be highly reliable.Users are cautioned against using the data on too small an area (for example, a small parcel of land), as the data may not be sufficiently accurate at that level of resolution.This model is built on the assumption that future patterns of development will match patterns in the past.It is important to recognize that the integrated probability of development is highest near existing roads, largely because the urban growth model does not attempt to predict the building of new roads and the development associated with them, nor does it incorporate county or town level planning for infrastructure. Because proximity to roads is an important and dominant predictor of development at the 30- m cell level in the model, the integrated probability of development surface is heavily weighted towards existing roads. It is not specifically designed to predict where a subdivision might be developed in the future.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information System (GIS) Services market is experiencing robust growth, driven by increasing adoption across various sectors. While the provided data lacks specific market size figures, based on industry reports and observed trends in related technology sectors, we can estimate a 2025 market size of approximately $15 billion USD. This reflects the significant investments being made in spatial data infrastructure and the growing demand for location-based analytics. Assuming a Compound Annual Growth Rate (CAGR) of 8%, the market is projected to reach roughly $25 billion by 2033. Key drivers include the rising need for precise mapping and location intelligence in environmental management, urban planning, and resource optimization. Furthermore, advancements in cloud-based GIS platforms, the increasing availability of big data, and the development of sophisticated geospatial analytics tools are fueling market expansion. The market is segmented by service type (Analyze, Visualize, Manage, Others) and application (primarily Environmental Agencies, but also extending to various sectors such as utilities, transportation, and healthcare). North America currently holds a significant market share due to early adoption and advanced technological infrastructure. However, regions like Asia-Pacific are demonstrating rapid growth, driven by increasing urbanization and infrastructure development. While the lack of readily available detailed market figures presents a challenge for complete precision in projection, the overall trend points to a considerable expansion of the GIS services sector over the forecast period. The competitive landscape is characterized by a mix of large multinational corporations like Infosys and Intellias and smaller, specialized firms like EnviroScience and R&K Solutions, reflecting the diverse needs of the market. These companies compete based on their technological capabilities, industry expertise, and geographical reach. The ongoing integration of GIS with other technologies, such as artificial intelligence (AI) and machine learning (ML), will further shape the market landscape, creating opportunities for innovation and differentiation. Challenges include the high initial investment costs associated with implementing GIS solutions and the need for skilled professionals to effectively utilize these technologies. However, the long-term benefits of improved decision-making and operational efficiency are driving wider adoption despite these hurdles. The future growth of the GIS services market hinges on the continued development of innovative technologies and the increasing awareness of the value that location-based insights provide across various industries.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.
One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.
Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.
The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.
Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.
Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.
The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Town of Blacksburg, Virginia August 2018 map. Displays a polygon layer identifying urban development areas. This data is being preserved and distributed by Virginia Tech University Libraries. This data is meant for general use only. Virginia Tech’s University Library is acting as a steward for this data and any questions about its use should refer to the Town of Blacksburg Engineering & GIS group.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
North America Geographic Information System Market Size 2025-2029
The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.
The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
What will be the Size of the market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Data
Services
Deployment
On-premise
Cloud
Geography
North America
Canada
Mexico
US
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.
Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.
Get a glance at the market report of share of various segments Request Free Sample
Market Dynamics
Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?
Rising applications of geographic
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global Geographic Information System Software Market was valued at USD 8.5 billion in 2022 and will reach USD 21.0 billion by 2030, registering a CAGR of 12.1% for the forecast period 2023-2030. Factor Impacting the Geographic Information System Software Market:
The development of smart cities and Modern urban Planning is expected to drive the Geographic Information System Software Market
The process of site selection, land acquisition, planning, designing, visualizing, building, project management, operations, and reporting are all aided by geographic information system (GIS) software for smart cities. Moreover, geographic information system (GIS) solutions are used in urban planning by experts to better properly analyze, model, and visualize places. By processing geospatial data from satellite imaging, aerial photography, and remote sensors, geographic information system (GIS) software systems offer a comprehensive perspective of the land and infrastructure. Additionally, the industry for geographic information system software is growing over the forecast period as a result of such geographic information system (GIS) software applications.
Restraining factor for Geographic Information System Software Market
The high cost of the system has impacted the Geographic Information System Software Market
The pricey geographic information system will further derail the overall market’s growth. The geographic information system (GIS) is expensive because, in addition to the technology and software, it is necessary to have a properly qualified human workforce. Moreover, Specialized knowledge is needed to comprehend and interpret the information gathered by a geographic information system (GIS) system, which is expensive to hire and train. This factor will therefore obstruct market growth over the forecast period. What is Geographic Information System Software?
Geographic Information System Software is used to develop, hold, retrieve, organize, display, and perform analyses on many kinds of spatial and geographic data. The geographic information system (GIS) Industry is majorly driven by infrastructural developments, such as smart cities, water and land management, utility, and urban planning. The services segment provides various applications such as location-based services and, thus, is one of the prominent contributors to the market share. Advancements in GIS technologies, such as geo-analytics and integrated location-based data services, are also boosting the adoption of GIS in various regional markets, thereby driving the market demand over the forecast period.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming Geographic Information System (GIS) Tools market! Our analysis reveals a $2979.7 million market in 2025, projected to grow at a 5.5% CAGR through 2033. Explore key drivers, trends, regional breakdowns, and leading companies shaping this dynamic industry.
Facebook
TwitterHEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of the Big Thicket National Preserve Area, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (btam_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (btam_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bith_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bith_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (btam_surficial_geology_metadata_faq.pdf). Please read the bith_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Water Development Board. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (btam_surficial_geology_metadata.txt or btam_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterPolygon geometry with attributes displaying economic development zones in East Baton Rouge Parish, Louisiana.Metadata
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
All of the ERS mapping applications, such as the Food Environment Atlas and the Food Access Research Atlas, use map services developed and hosted by ERS as the source for their map content. These map services are open and freely available for use outside of the ERS map applications. Developers can include ERS maps in applications through the use of the map service REST API, and desktop GIS users can use the maps by connecting to the map server directly.
Facebook
TwitterBuild compelling, insightful applications to help your communities respond to COVID-19.As the global coronavirus disease 2019 (COVID-19) situation continues to evolve, Esri supports software developers with maps, data hosting, and authoritative content to help you build solutions and aid pandemic response efforts. _Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterThis is a geographic dataset of the Master Development Plans (MDP). A MDP is required for any development of two or more phases. The agreement includes the location and widths of proposed streets, lots, blocks, floodplains and easement information.
Facebook
TwitterThe table Firm survey wave 1 and 2 (GIS) is part of the dataset SEDRI Ethiopia firm survey (GIS), available at https://stanford.redivis.com/datasets/rxq3-9x047we25. It contains 1585 rows across 3377 variables.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The GIS Controller market size was valued at $8.3 billion in 2023 and is projected to reach $15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.2% during the forecast period. This significant growth factor can be attributed primarily to increasing urbanization, the rising need for efficient spatial data management, and technological advancements in geospatial analytics.
One of the prime growth factors driving the GIS Controller market is the escalating demand for smart city solutions. As urbanization continues to rise globally, governments and municipalities are increasingly investing in smart city initiatives to improve urban planning, public safety, and resource management. GIS controllers play a crucial role in these initiatives by providing accurate spatial data, which is essential for efficient infrastructure development, traffic management, and environmental monitoring. Furthermore, the integration of GIS with other technologies such as IoT and AI is opening new avenues for real-time data analysis and decision-making, further propelling market growth.
The agriculture sector is another significant contributor to the growth of the GIS Controller market. Precision farming techniques that leverage GIS technology are gaining traction for their ability to enhance crop yield and optimize resource usage. By providing detailed insights into soil conditions, weather patterns, and crop health, GIS controllers enable farmers to make data-driven decisions, thereby improving operational efficiency and reducing costs. Additionally, government initiatives aimed at promoting sustainable farming practices are further fueling the adoption of GIS technology in the agricultural sector.
Disaster management is another critical application area where GIS controllers are making a substantial impact. The increasing frequency of natural disasters such as hurricanes, floods, and earthquakes necessitates advanced planning and real-time response capabilities. GIS controllers help in mapping disaster-prone areas, predicting the impact of natural calamities, and coordinating emergency response efforts. This capability is invaluable for minimizing damage and saving lives. The growing focus on disaster preparedness and management is expected to drive the demand for GIS controllers in the coming years.
Regionally, North America holds a significant share of the GIS Controller market, driven by the high adoption rate of advanced technologies and substantial investments in smart city projects. The Asia Pacific region is expected to witness the highest growth rate, fueled by rapid urbanization, infrastructural development, and increasing government initiatives for digital transformation. Europe also presents substantial growth opportunities due to the rising focus on environmental sustainability and smart transportation systems.
The GIS Controller market is segmented into three primary components: Hardware, Software, and Services. The hardware segment includes devices and equipment necessary for capturing and processing geospatial data, such as GPS units, sensors, and data collection devices. This segment is witnessing steady growth due to the increasing need for advanced and accurate data collection tools. The integration of AI and IoT with GIS hardware is further enhancing the capabilities of these devices, making them indispensable for various applications such as urban planning, agriculture, and disaster management.
In terms of software, GIS Controllers are equipped with specialized software for data analysis, mapping, and modeling. This segment is experiencing rapid growth due to the increasing demand for sophisticated analytical tools that can handle large datasets and provide real-time insights. Advanced GIS software solutions are being developed to offer more user-friendly interfaces and better integration with other enterprise systems, thereby enhancing their usability and effectiveness across different sectors. The rise of cloud-based GIS software is also contributing to the growth of this segment by offering scalable and cost-effective solutions.
The services segment comprises consultancy, implementation, and maintenance services essential for the effective deployment and utilization of GIS Controllers. As organizations increasingly adopt GIS technology, the demand for specialized services that can ensure smooth integration and optimal performance is rising. Professional services providers are offering customized solutions to meet the specific needs of different industries
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This research study considers one such urban technology, namely utilising digital twins in cities. Digital twin city (DTC) technology is investigated to identify the gap in soft infrastructure data inclusion in DTC development. Soft infrastructure data considers the social and economic systems of a city, which leads to the identification of socio-economic security (SES) as the metric of investigation. The study also investigated how GIS mapping of the SES system in the specific context of Hatfield informs a soft infrastructure understanding that contributes to DTC readiness. This research study collected desk-researched secondary data and field-researched primary data in GIS using ArcGIS PRO and the Esri Online Platform using ArcGIS software. To form conclusions, grounded theory qualitative analysis and descriptive statistics analysis of the spatial GIS data schema data sets were performed.