CDFW BIOS GIS Dataset, Contact: BLM Bureau of Land Management, Description: To identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geospatial Information Systems (GIS) market for the energy and utilities sector is experiencing robust growth, driven by the increasing need for efficient asset management, improved network planning, and enhanced operational efficiency. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $28 billion by 2033. This growth is fueled by several key factors. Firstly, the expanding adoption of smart grids and renewable energy sources necessitates sophisticated GIS solutions for monitoring, managing, and optimizing energy distribution. Secondly, the rising demand for improved infrastructure planning and maintenance, particularly in aging grids, is driving investment in GIS technologies for predictive maintenance and risk assessment. Thirdly, the increasing availability of high-resolution satellite imagery and advanced analytics capabilities is enhancing the accuracy and insights derived from GIS applications. The market is segmented by application (SMEs and Large Enterprises) and type (Cloud-based and On-premises). Large enterprises currently dominate the market due to higher budgets and complex infrastructure needs, but the SME segment shows significant growth potential as cloud-based GIS solutions become more accessible and affordable. Geographical distribution reveals strong market presence in North America and Europe, fueled by established infrastructure and early adoption of GIS technologies. However, significant growth opportunities exist in Asia-Pacific, particularly in developing economies like India and China, where rapid urbanization and infrastructure development are driving demand for GIS solutions. While the market faces restraints such as high initial investment costs and the need for skilled professionals, the overall growth trajectory remains positive. The increasing integration of GIS with other technologies, such as IoT and AI, is expected to further enhance its capabilities and drive market expansion. Key players in this space include Precisely, Esri, Autodesk, and others, constantly innovating to provide advanced GIS solutions tailored to the specific needs of the energy and utilities sector. The competitive landscape is characterized by both established players and emerging technology providers.
CDFW BIOS GIS Dataset, Contact: CEC California Energy Commission (CEC), Description: Locations of proposed Solar thermal energy projects for the Renewable Energy Transmission Initiative (RETI), from the California Energy Commission.
This dataset was developed by the National Renewable Energy Laboratory (NREL) for the U.S. Agency for International Development's (USAID) South Asia Regional Initiative for Energy Cooperation (SARI/E). The dataset contains Wind Power Density at 50-m Above Ground Level in the form of a GIS shapefile. The data were output in Geographic Information Systems (GIS) format and incorporated into a Geospatial Toolkit (GsT) which is provided in data resources. The GsT allows the user to examine the resource data in a geospatial context along with other key information relevant to renewable energy development, such as transportation networks, transmission corridors, existing power facilities, load centers, terrain conditions, and land use.
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, spatial analysis,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains information about the biomass resources generated by county in the United States. It includes the following feedstock categories: crop residues, forest residues, primary mill residues, secondary mill residues, and urban wood waste.
The estimates are based on county-level statistics and/or point-source data gathered from the U.S. Department of Agriculture (USDA), USDA Forest Service, EPA and other organizations, which are further processed using relevant assumptions and conversions.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global market for solar resource assessment software is experiencing robust growth, driven by the increasing demand for renewable energy and the need for efficient solar power plant development. The market size in 2025 is estimated at $250 million, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This growth is fueled by several key factors: the expanding solar energy sector globally, stringent government regulations promoting renewable energy adoption, advances in software capabilities offering more accurate and detailed assessments, and the decreasing costs of solar technology making it more accessible. The segment for paid, commercial applications currently dominates the market share, reflecting the preference of large-scale solar developers for sophisticated, feature-rich software solutions that ensure optimal project planning and profitability. However, the free and personal application segments are also showing promising growth, catering to smaller-scale projects, educational institutions, and individual users exploring solar energy options. Geographic expansion into developing economies with high solar irradiance presents significant opportunities for market expansion. The continued growth trajectory is expected to be influenced by factors such as technological advancements leading to improved prediction accuracy and integration with other renewable energy modeling tools. Increased investment in research and development within the sector, coupled with the expanding adoption of cloud-based software solutions, will contribute to market expansion. However, challenges such as the need for accurate and reliable meteorological data, the complexity of software usage for non-experts, and the potential for market saturation in certain regions might impede growth to some degree. Nevertheless, the long-term outlook for the solar resource assessment software market remains positive, with a substantial increase in market value projected throughout the forecast period, driven by the relentless push towards global decarbonization and the escalating adoption of sustainable energy solutions.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Annex 1 - plants powered by RES in the Lazio Region; Annex 2 - Electricity consumptions, RES electricity production and percentages of electricity consumption from local RES for each Lazio Municipality; Annex 3 - Additional PV power and PV surface for each Lazio Municipality
The BEPS Program was created by Title III of the Clean Energy DC Omnibus Act of 2018. The BEPS is a minimum threshold of energy performance that will be no lower than the local median ENERGY STAR score by property type (or equivalent metric). The standards were created to drive energy performance in existing buildings to help meet the energy and climate goals of the Sustainable DC plan — to reduce greenhouse gas emissions and energy consumption by 50% by 2032. DOEE established the first set of Standards on January 1, 2021. Standards will then be set every 6 years, creating BEPS Periods (BEPS Period 1, BEPS Period 2, etc.). The 2021 Building Energy Performance Standards and a Guide to the 2021 BEPS are available for viewing on DOEE’s website.To improve transparency and help building owners understand how their building performs relative to the BEPS, DOEE is publishing this BEPS Disclosure that compares a building’s benchmarking data with the BEPS and provides an estimate of the building’s distance from the standard and estimated performance requirement.Please note that this dataset is based on information currently available to DOEE using calendar year 2019 benchmarking data provided by the building owner. Some buildings are still being evaluated and therefore have been designated as “Under Review” in this dataset. Building owners that believe their 2019 calendar year data is incorrect should contact the Benchmarking Help Center (info.benchmark@dc.gov). Additionally, buildings that meet certain criteria may request a variance from the standards by submitting a variance request form on the DOEE website.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Abstract: Annual average wind resource potential for Wisconsin at a 50 meter height.
Purpose: Provide information on the wind resource development potential in Wisconsin.
Supplemental Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects.
Other Citation Details: This map has been validated with available surface data by NREL and wind energy meteorological consultants.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
CDFW BIOS GIS Dataset, Contact: CEC California Energy Commission (CEC), Description: Environmentally sensitive areas and areas with land uses/ownership that restrict/prevent renewable energy project and transmission infrastructure development. From Black & Veatch consultants via the California Energy Commission for the RETI process.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Abstract: Monthly and annual average solar resource potential for Alaska.
Purpose: Provide information on the solar resource potential for Alaska. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location.
Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in watt hours.
Other Citation Details:
George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME.
Maxwell, E, R. George and S. Wilcox, "A Climatological Solar Radiation Model", Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM.
DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets are sourced from the Ugandan Energy Sector GIS Working Group Open Data Site, developed and maintained by the Ugandan Energy Sector GIS Working Group. The Ugandan Energy Sector GIS Working Group’s mission is to develop a high quality GIS for the Energy Sector of Uganda in order to drive informed decision-making. As such, it brings datasets together in one place, organize them, keep them updated, and make public data available to all stakeholders. Link: http://data-energy-gis.opendata.arcgis.com/
CDFW BIOS GIS Dataset, Contact: BDB Biogeographic Data Branch, Description: This is the planning boundary for the Desert Renewable Energy Conservation Plan (DRECP). This boundary was jointly developed and approved by the California Department of Fish and Game and the California Energy Commission.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America.
Purpose: Provide information on the solar resource potential for the for the lower 48 states of the United States of America.
Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.
Other Citation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
The United States Wind Turbine Database (USWTDB) provides the locations of land-based and offshore wind turbines in the United States, corresponding wind project information, and turbine technical specifications. Wind turbine records are collected and compiled from various public and private sources, digitized and position-verified from aerial imagery, and quality checked. The USWTDB is available for download in a variety of tabular and geospatial file formats, to meet a range of user/software needs. Dynamic web services are available for users that wish to access the USWTDB as a Representational State Transfer Services (RESTful) web service. Archived from https://energy.usgs.gov/uswtdb/
This archive contains raw input data for the Public Utility Data Liberation (PUDL) software developed by Catalyst Cooperative. It is organized into "https://specs.frictionlessdata.io/data-package/">Frictionless Data Packages. For additional information about this data and PUDL, see the following resources:
https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use
Energy data and map are from the California Energy Commission and include utilityscale power plants. Plants of any type below 1 MW (e.g. residential solar) are notincluded. Values shown are as of the end of the year. Hydroelectric plants of 30 MWand less are considered renewable energy sources in California. Hydroelectric plantsover 30 MW are non-renewable. Counties without pie symbols had no utility scalerenewable energy generation for the year. Data is for 2023 and is current as of July 2,2024. Projection: NAD 1983 (2011) California (Teale) Albers (Meters). For moreinformation, contact John Hingtgen at john.hingtgen@energy.ca.gov.
description: Annual average wind resource potential for the United States (low resolution) ### License Info DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory (?NREL?), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy (?DOE?). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.; abstract: Annual average wind resource potential for the United States (low resolution) ### License Info DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory (?NREL?), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy (?DOE?). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Annual average wind resource development potential for the state of Texas.
This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile is in a UTM zone 19, datum WGS 84 projection system.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Datasets of hydro energy generators connected to the electricity network are Downloadable as GIS shapefiles. Two Spatial reference systems are applied to the Downloadable GIS shapefiles: Irish transverse Mercator (ITM) and WGS 84 (EPSG:3857). Connected generators are those with an electrical connection to the electricity network or “grid”. Each connection is quantified by a Maximum Export Capacity (MEC), expressed in megawatts (MW). Hydro generators built over multiple Phases appear in these datasets as individual generators, each with a total MEC value. Such generators are larger, TSO-connected, and built in early decades of the State at: Ardnacrusha, Cliff, Cathleen’s Fall, Inniscarra, and Pollaphuca. The Sustainable Energy Authority of Ireland (SEAI) offers the same data in its Hydro Mapping System, a digital map of Ireland’s hydro energy connections and resources (http://gis.seai.ie/hydro). References Ireland’s distributed System Operator (DSO) and Transmission System Operator (TSO), ESB Networks and EirGrid respectively, provided the raw data on hydro energy connections. They publish their datasets, for information purposes, at: DSO Connected-Energised Non-Wind Generators (ESB Networks) https://www.esbnetworks.ie/new-connections/generator-connections-group/generator-statistics TSO Connected Renewable Generators (EirGrid Group) https://www.eirgridgroup.com/customer-and-industry/general-customer-information/connected-and-contracted-generators/
CDFW BIOS GIS Dataset, Contact: BLM Bureau of Land Management, Description: To identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally.