Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Facebook
TwitterThis data set uses information from previously reported dye traces and dye traces conducted by the Missouri Geological Survey and included in the report entitled, "Revised Recharge Areas of Selected Springs in the Big Four Region of the Ozarks."
Facebook
TwitterPoints depicting the FNSB MACS (Metropolitan Area Commuter System) transit bus stops.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://creativecommons.org/licenses/http://creativecommons.org/licenses/
The Geology of the Northern Jetty Peninsula GIS dataset contains the shapefiles and tables of the basement geology of the Northern Jetty Peninsula in East Antarctica. This dataset is derived from the map product ‘Geology of Northern Jetty Peninsula, Mac.Robertson Land, Antarctica'.
Northern Jetty Peninsula, incorporating Else Platform (~140 km2) and Kamenistaja Platform (~15 km2), represents a mostly ice-free low-lying region located on the western flanks of the Lambert Graben. The region is underlain by granulite-facies Proterozoic gneisses and unmetamorphosed Permian sediments.
Facebook
TwitterLines depicting the FNSB MACS (Metropolitan Area Commuter System) transit bus routes.
Facebook
TwitterThe PALEOMAP project produces paleogreographic maps illustrating the Earth's plate tectonic, paleogeographic, climatic, oceanographic and biogeographic development from the Precambrian to the Modern World and beyond.
A series of digital data sets has been produced consisting of plate tectonic data, climatically sensitive lithofacies, and biogeographic data. Software has been devloped to plot maps using the PALEOMAP plate tectonic model and digital geographic data sets: PGIS/Mac, Plate Tracker for Windows 95, Paleocontinental Mapper and Editor (PCME), Earth System History GIS (ESH-GIS), PaleoGIS(uses ArcView), and PALEOMAPPER.
Teaching materials for educators including atlases, slide sets, VHS animations, JPEG images and CD-ROM digital images.
Some PALEOMAP products include: Plate Tectonic Computer Animation (VHS) illustrating motions of the continents during the last 850 million years.
Paleogeographic Atlas consisting of 20 full color paleogeographic maps. (Scotese, 1997).
Paleogeographic Atlas Slide Set (35mm)
Paleogeographic Digital Images (JPEG, PC/Mac diskettes)
Paleogeographic Digital Image Archive (EPS, PC/Mac Zip disk) consists of the complete digital archive of original digital graphic files used to produce plate tectonic and paleographic maps for the Paleographic Atlas.
GIS software such as PaleoGIS and ESH-GIS.
Facebook
TwitterDNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.
DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.
DNRGPS does not require installation. Simply run the application .exe
See the DNRGPS application documentation for more details.
Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs
Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.
Prerequisite: .NET 4 Framework
DNR Data and Software License Agreement
Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.
Facebook
TwitterThis record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "Unbroken whispers: the ripples connecting sea kin". For specific data outputs from this project, please see child records associated with this metadata. Knowledge, in all its forms, is key to effectively protecting and recovering threatened and migratory whales and dolphins. Indigenous ecological knowledge (IEK) has guided Indigenous peoples through many uncertain climate and ecological fluctuations. IEK has also been used as part of protected area and species management for many thousands of years. More recently, IEK has shown huge potential to contribute to our understanding of threatened and migratory whales and dolphins, but this knowledge has not historically been collated, analysed or properly considered. Consequently, there is an absence of Indigenous perspectives and use of cultural knowledge informing the protection and recovery of EPBC listed threatened and migratory species. This Indigenous-led project will identify and share (where appropriate) cultural knowledge of relationships with whales and dolphins, and connections between land, sea and sky. Indigenous communities will participate in research that explores cultural ideology around kinship and responsibilities to kin, through expressing the knowledge, values and concerns they hold for whales and dolphins. The acquired knowledge and methods will support the cultural governance of sea Country by Indigenous communities and organisations, and policymaking, implementation and review by government agencies in relation to resource use and conservation. Outputs • GIS visualisation package of key geospatial layers related to connecting land and sea in the context of cultural keystone species [dataset] • Final project report [written]
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The approximate extent of seabird colonies on Scullin Monolith, Mac.Robertson Land, Antarctica in 1986/87. The species include Adélie Penguin, Antarctic Petrel, Cape Petrel, Southern Fulmar and …Show full descriptionThe approximate extent of seabird colonies on Scullin Monolith, Mac.Robertson Land, Antarctica in 1986/87. The species include Adélie Penguin, Antarctic Petrel, Cape Petrel, Southern Fulmar and South Polar Skua.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GIS-Sebahagian Senarai Inventori Pokok Presint 1 sehingga Mac 2018
Facebook
TwitterLocal fire district boundaries across California hosted on ArcGIS Online.Local fire district data obtained from fire departments, cities, counties, and other state entities. The Department of Forestry and Fire Protection (CAL FIRE) makes no guarantees regarding the quality or completeness of the data. It has not been fully reviewed for accuracy and is intended to be used for informational purposes only.Minor changes have been done by Pre-Fire Engineers as well as the Office of the State Fire Marshal (OSFM) to better align edges and remove small overlaps. Boundaries are tied with the corresponding Fire Department Identification (FDID) records kept by OSFM as well as Cal OES MACS 3 Letter IDs used to identify agencies and operational areas dispatching resources. The data currently contains gaps due to a variety of reasons including uncollected information from Federal Lands, reservations, counties, and cities. These gaps however do not necessarily mean there is no coverage or fire protection available. CAL FIRE's goal is to make this data publicly available and easily accessible. To this end, CAL FIRE has reached out to numerous jurisdictions to collect the data currently displayed. It is CAL FIRE's hope that creating this centralized dataset will promote cooperation between neighboring jurisdictions when creating and updating their GIS boundaries, eventually filling in and removing these gaps in the data as well as to better align their borders.This data is updated annually as the Authorities Having Jurisdiction (AHJ) submit updated records and boundaries throughout the year. Not all AHJs submit updates regularly and as such FDID and boundary information may become outdated over time. If you are a representative of one of these AHJs and see outdated information, please submit a Fire Department Information Change Notice.If you would like to submit updated GIS boundaries, please use this application: California Fire District Submission Web AppThis service represents the latest official release as of March 2025.
Facebook
TwitterThis dataset lists the current Disaster Declarations in Shapefile. This data was compiled and distributed by FEMA Mapping and Analysis Center (MAC). Metadata file can be accessed http://gis.fema.gov/metadata/Declarations_meta.xml Visit gis.fema.gov/data-feeds for more information
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 63 shapefiles that represent the areas of relevance for each research project under the National Environmental Science Program Marine and Coastal Hub, northern and southern node projects for Rounds 1, 2 & 3.
Methods:
Each project map is developed using the following steps:
1. The project map was drawn based on the information provided in the research project proposals.
2. The map was refined based on feedback during the first data discussions with the project leader.
3. Where projects are finished most maps were updated based on the extents of datasets generated by the project and followup checks with the project leader.
The area mapped includes on-ground activities of the project, but also where the outputs of the project are likely to be relevant. The maps were refined by project leads, by showing them the initial map developed from the proposal, then asking them "How would you change this map to better represent the area where your project is relevant?". In general, this would result in changes such as removing areas where they were no longer intending research to be, or trimming of the extents to better represent the habitats that are relevant.
The project extent maps are intentionally low resolution (low number of polygon vertices), limiting the number of vertices 100s of points. This is to allow their easy integration into project metadata records and for presenting via interactive web maps and spatial searching. The goal of the maps was to define the project extent in a manner that was significantly more accurate than a bounding box, reducing the number of false positives generated from a spatial search. The geometry was intended to be simple enough that projects leaders could describe the locations verbally and the rough nature of the mapping made it clear that the regions of relevance are approximate.
In some cases, boundaries were drawn manually using a low number of vertices, in the process adjusting them to be more relevant to the project. In others, high resolution GIS datasets (such as the EEZ, or the Australian coastline) were used, but simplified at a resolution of 5-10km to ensure an appopriate vertices count for the final polygon extent. Reference datasets were frequently used to make adjustments to the maps, for example maps of wetlands and rivers were used to better represent the inner boundary of projects that were relevant for wetlands.
In general, the areas represented in the maps tend to show an area larger then the actual project activities, for example a project focusing on coastal restoration might include marine areas up to 50 km offshore and 50 km inshore. This buffering allows the coastline to be represented with a low number of verticies without leading to false negatives, where a project doesn't come up in a search because the area being searched is just outside the core area of a project.
Limitations of the data:
The areas represented in this data are intentionally low resolution. The polygon features from the various projects overlap significantly and thus many boundaries are hidden with default styling. This dataset is not a complete representation of the work being done by the NESP MaC projects as it was collected only 3 years into a 7 year program.
Format of the data:
The maps were drawn in QGIS using relevant reference layers and saved as shapefiles. These are then converted to GeoJSON or WKT (Well-known Text) and incorporated into the ISO19115-3 project metadata records in GeoNetwork. Updates to the map are made to the original shapefiles, and the metadata record subsequently updated.
All projects are represented as a single multi-polygon. The multiple polygons was developed by merging of separate areas into a single multi-polygon. This was done to improve compatibility with web platforms, allowing easy conversion to GeoJSON and WKT.
This dataset will be updated periodically as new NESP MaC projects are developed and as project progress and the map layers are improved. These updates will typically be annual.
Data dictionary:
NAME - Title of the layer
PROJ - Project code of the project relating to the layer
NODE - Whether the project is part of the Northern or Southern Nodes
TITLE - Title of the project
P_LEADER - Name of the Project leader and institution managing the project
PROJ_LINK - Link to the project metadata
MAP_DESC - Brief text description of the map area
MAP_TYPE - Describes whether the map extent is a 'general' area of relevance for the project work, or 'specific' where there is on ground survey or sampling activities
MOD_DATE - Last modification date to the individual map layer (prior to merging)
Updates & Processing:
These maps were created by eAtlas and IMAS Data Wranglers as part of the NESP MaC Data Management activities. As new project information is made available, the maps may be updated and republished. The update log will appear below with notes to indicate when individual project maps are updated:
20220626 - Dataset published (All shapefiles have MOD_DATE 20230626)
Location of the data:
This dataset is filed in the eAtlas enduring data repository at: data\custodian
esp-mac-3\AU_AIMS-UTAS_NESP-MaC_Project-extents-maps
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GIS-Sebahagian Senarai Inventori Pokok Presint 16 sehingga Mac 2018
Facebook
TwitterMunicipal Advisory Councils (MACs) were established by the Board of Supervisors to advise them on matters of concern which relate to the area served. It is a forum where information about land use, transportation and general county information is shared, discussed and where the MAC members may make recommendations on those topics and more. It is a great venue where residents can attend these meetings in their own community and talk about issues that are important to them.This layer is part of a collection of public geospatial datasets produced by the Placer County GIS Division.
Facebook
TwitterAttachment regarding request by MAC Development, LLC for preliminary subdivision review of “Cedar Grove Subdivision – Phase V (Lots 29 – 35) on 23 acres, located off S. R. 1540, Jones Ferry Road and Cedar Grove Road, Baldwin Township.
Facebook
TwitterAttachment regarding request by MAC Development, LLC for subdivision sketch design approval of Cedar Grove Subdivision, Phase IV (Lots 18 – 28), consisting of 11 lots on 43 acres, located off S. R. 1540, Jones Ferry Road, Baldwin Township.
Facebook
TwitterAttachment regarding request by MAC Development, LLC for subdivision sketch design approval of “Cedar Grove Subdivision – Phase V”, (Lots 29 – 35), consisting of 7 lots on 23 acres, located off S. R. 1540, Jones Ferry Road, Baldwin Township.
Facebook
TwitterAttachment regarding request by MAC Development Company for subdivision final plat approval of Cedar Grove Subdivision, Phase V, consisting of 7 lots on 23 acres, located off SR-1540, Jones Ferry Road, Baldwin Township.
Facebook
TwitterAttachment regarding request by MAC Development Company for subdivision final plat review of “Cedar Grove, Phase IV” , Lots 18 and 24 – 28, consisting of 6 lots on 25 acres, located off SR-1540, Jones Ferry Road, and Cedar Grove Road, Baldwin Township.
Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.