MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipThis ground-water resources theme shows an estimate of sustainable yield available from the aquifers in the area. It was digitized from a paper county map with a scale of 1:62500.
Digitizing used run length encoing techniques sampling along horizontal lines which represented the midline of cells with a height of 250 feet. The horizontal measurement increment was one decafoot (10 feet). Additional details of the digitizing process are available on request. The coverage was susequently converted to Arc/Info vector format.
Original coverage data was converted from the .e00 file to a more standard ESRI shapefile(s) in November 2014.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesReal Estate & Land ManagementReal Estate and Lands Management2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This HydroShare Resource illustrates to student in the GIS in Water Resources Classes at Utah State University and University of Texas at Austin how to prepare HydroShare resources to post term projects.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document outlines some of the methods used by Geoscience Australia (GA) to symbolise the Geology and Hydrogeology map of Timor-Leste. It is designed to be used as a knowledge-sharing and educational tool by water resource management and geology technicians from Timor-Leste government agencies.
USGS GIS data of the United States water resources maps, soil, hydrology, and weather. Contains multiple links to useful and informative websites.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipThis ground water resources theme shows an estimate of sustainable yield available from the aquifers in the area. It was digitized in vector format from a paper county map with a scale of 1:63360. The user should also consult the theme "Areas of Ground Water Contamination - Trumbull County" for additional information.
Original coverage data was converted from the .e00 file to a more standard ESRI shapefile(s) in November 2014.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesReal Estate & Land ManagementReal Estate and Lands Management2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov
This dataset depicts groundwater level (expressed as elevation) at selected monitoring locations (wells), by season and year. Other information on the monitoring location is also included. Water level monitoring locations and measurements used are selected based on measurement date and well construction information, where available, and approximate groundwater levels in the unconfined to uppermost semi-confined aquifers.
The purpose of this project is to show how the health of fishes can be impacted by high or low levels of dissolved oxygen in river systems. The oxygen concentrations will be compared with theoretical values to determine if the river system is clean or polluted. A polluted system or system that has sufficient nutrients including phosphorus has an explosion plant growth and when this plants die the bacteria feed on the organic matter, in the process consume an increased amount of DO. This why a clean water system is ideal for a healthy aquatic system (McLean, 2015).
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments.
The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013. The source dataset ia identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
Displays the original Hydstra measurement (HYDMEAS) tabular data records (as stored in the Hydstra software platform) in a GIS format for interpretation and analysis.
Analysis completed on this dataset includes extracts to determine location and status of current monitoring bores:
HYDMEAS - original tabular database file (dbf) showing groundwater levels
HYDMEAS_XY_all - displays all original tabular data in GIS shapefile format
HYDMEAS_unique_bores - shows one record for each unique bore station ID
HYDMEAS_2008 - All HYDMEAS data from 2008 or later
HYDMEAS_2008to2013_mulitple_reading - All HYDMEAS data from 2008 or later which has been monitored twice or more (in that period), produced to estimate groundwater level monitoring bores
National Groundwater Information System (NGIS) data supplied as a comparison of HYDMEAS monitoring estimates.
Hydstra is a water resources time series data management system developed by KISTERS Pty Ltd.
Provide spatial distribution of groundwater level monitoring status and reading for New South Wales.
HYDMEAS - original tabular data
HYDMEAS_XY_all - displays all original tabular data in GIS format - Displayed as XY in ArcGIS based on Lat and Long attributes and exported as a point shapefile
HYDMEAS_unique_bores - shows one record for each unique bore ID - Dissolved HYDMEAS_XY_all based on STATION field
HYDMEAS_2008 - All HYDMEAS data from 2008 or later - Selected based on DATE field
HYDMEAS_2008to2013_mulitple_reading - All HYDMEAS data from 2008 or later which has been monitored twice or more (in that period), produced to estimate groundwater level monitoring bores - HYDMEAS_2008 dataset dissolved based on STATION and a count field added. Only bores with count of 2 or more were retained
Bioregional Assessment Programme (2014) GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office of Water - Nov2013. Bioregional Assessment Derived Dataset. Viewed 22 June 2018, http://data.bioregionalassessments.gov.au/dataset/d414c703-aabd-43af-81e0-30aab4d9dfb1.
The dataset is a feature class showing the boundaries of 515 groundwater basins and subbasins as defined by the California Department of Water Resources as last modified by the Basin Boundary Emergency Regulation adopted on October 21, 2015 and subsequent modifications requested through the Basin Boundary Modification Request Process. This data is current as of December 9, 2022. The file is in ESRI geodatabase format and is intended for use with compatible GIS software. Groundwater basins are represented as polygon features and designated on the basis of geological and hydrological conditions - usually the occurrence of alluvial or unconsolidated deposits. When practical, large basins are also subdivided by political boundaries, as in the Central Valley. Basins are named and numbered per the convention of the Department of Water Resources.
The Surface Hydrology Polygons (National) dataset presents the spatial locations of surface hydrology polygon features and its attributes. The dataset represents the Australia's surface hydrology at a national scale. It includes natural and man-made geographic features such as: watercourse areas, swamps, reservoirs, canals, etc. This product presents hydrology polygon features which will topological connect with the hydrology line features and forms a complete flow path network for the entire continental of Australia.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A Geographic Information System (GIS) shapefile and summary tables of irrigated agricultural land-use are provided for the 15 counties fully within the Northwest Florida Water Management District (Bay, Calhoun, Escambia, Franklin, Gadsden, Gulf, Holmes, Jackson, Leon, Liberty, Okaloosa, Santa Rosa, Wakulla, Walton, and Washington counties). These files were compiled through a cooperative project between the U.S. Geological Survey and the Florida Department of Agriculture and Consumer Services, Office of Agricultural Water Policy. Information provided in the shapefile includes the location of irrigated lands that were verified during field surveying that started in May 2021 and concluded in August 2021. Field data collected were crop type, irrigation system type, and primary water source used. A map image of the shapefile is also provided. Previously published estimates of irrigation acreage for years since 1982 are included in summary tables.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipThis Ground-Water Resources theme shows an estimate of sustainable yield available from acquifers in the area. Individual well yields may vary.
This coverage was vector digitized from a county map at a scale of 1:62500.
Original coverage data was converted from the .e00 file to a more standard ESRI shapefile(s) in November 2014.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesReal Estate & Land ManagementReal Estate and Lands Management2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov
A dataset of well information and geospatial data was developed for 426 U.S. Geological Survey (USGS) observation wells in Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. An extensive list of attributes is included about each well, its location, and water-level history to provide the public and water-resources community with comprehensive information on the USGS well network in New England and data available from these sites. These data may be useful for evaluating groundwater conditions and variability across the region. The well list and site attributes, which were extracted from USGS National Water Information System (NWIS), represent all of the active wells in the New England network up to the end of 2017, and an additional 45 wells that were inactive (discontinued or replaced by a nearby well) at that time. Inactive wells were included in the database because they (1) contain periods of water-level record that may be useful for groundwater assessments, (2) may become active again at some point, or (3) are being monitored by another agency (most discontinued New Hampshire wells are still being monitored and the data are available in the National Groundwater Monitoring Network (https://cida.usgs.gov/ngwmn/index.jsp). The wells in this database have been sites of water-level data collection (periodic levels and/or continuous levels) for an average of 31 years. Water-level records go back to 1913. The groundwater-level statistics included in the dataset represent hydrologic conditions for the period of record for inactive wells, or through the end of water year 2017 (September 30, 2017) for active wells. Geographic Information Systems (GIS) data layers were compiled from various sources and dates ranging from 2003 to 2018. These GIS data were used to calculate attributes related to topographic setting, climate, land cover, soil, and geology giving hydrologic and environmental context to each well. In total, the data include 90 attributes for each well. In addition to site number and station name, attributes were developed for site information (15 attributes); groundwater-level statistics through water year 2017 (16 attributes); well-construction information (9 attributes); topographic setting (11 attributes); climate (2 attributes); land use and cover (17 attributes); soils (4 attributes); and geology (14 attributes). Basic well and site information includes well location, period of record, well-construction details, continuous versus intermittent data collection, and ground altitudes. Attributes that may influence groundwater levels include: well depth, location of open or screened interval, aquifer type, surficial and bedrock geology, topographic position, flow distance to surface water, land use and cover near the well, soil texture and drainage, precipitation, and air temperature.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases:
(1) Storage and Retrieval (STORET) water quality database management system;
(2) River Reach File (RF3) Hydrography;
(3) Industrial Facilities Discharges;
(4) Drinking Water Supplies;
(5) Water Gages; and
(6) Water Impoundments.
The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipThis ground-water resources theme shows an estimate of sustainable yield available from the aquifers in the area. It was digitized from a paper county map with a scale of 1:62500.
Digitizing used run length encoing techniques sampling along horizontal lines which represented the midline of cells with a height of 250 feet. The horizontal measurement increment was one decafoot (10 feet). Additional details of the digitizing process are available on request. The coverage was susequently converted to Arc/Info vector format.
Original coverage data was converted from the .e00 file to a more standard ESRI shapefile(s) in November 2014.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesReal Estate & Land ManagementReal Estate and Lands Management2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov