Water utility areas in Johnson County
A Certificate of Convenience and Necessity (CCN) is issued by the Public Utility Commission of Texas (PUCT), and authorizes a utility to provide water and/or sewer service to a specific service area. The CCN obligates the water or sewer retail public utility to provide continuous and adequate service to every customer who requests service in that area. The maps and digital data provided in the Water and Sewer CCN Viewer delineate the official CCN service areas and CCN facility lines issued by the PUCT and its predecessor agencies. This dataset is a Texas statewide polygon layer of sewer CCN service areas. The CCNs were digitized from Texas Department of Transportation (TxDOT) county mylar maps. The mylar maps were the base maps on which the CCNs were originally drawn and maintained. CCNs are currently created and maintained using digitizing methods, coordinate geography or imported from digital files submitted by the applicant. TxDOT digital county urban road files are used as the base maps on which the CCNs are geo-referenced. It is best to view the sewer CCN service area data in conjunction with the sewer CCN facility line data, since these two layers together represent all of the retail public sewer utilities in Texas.*Important Notes: The CCN spatial dataset and metadata were last updated on: October 4, 2022The official state-wide CCN spatial dataset includes all types of CCN services areas: water and sewer CCN service areas; water and sewer CCN facility lines. This CCN spatial dataset is updated on a quarterly, or as needed basis using Geographic Information System (GIS) software called ArcGIS 10.8.2.The complete state-wide CCN spatial dataset is available for download from the following website: http://www.puc.texas.gov/industry/water/utilities/gis.aspxThe Water and Sewer CCN Viewer may be accessed from the following web site: http://www.puc.texas.gov/industry/water/utilities/map.htmlIf you have questions about this CCN spatial dataset or about CCN mapping requirements, please e-mail CCN Mapping Staff: water@puc.texas.govTYPE - Indicates whether a CCN is considered a water or a sewer system. If the CCN number begins with a '"1", the CCN is considered a water system (utility). If a CCN number begins with a "2", the CCN is considered a sewer system (utility).CCN_NO - A unique five-digit number assigned to each CCN when it is created and approved by the Commission. *CCN number starting with an ‘N’ indicates an exempt utility.UTILITY - The name of the utility which owns the CCN.COUNTY - The name(s) of the county(ies) in which the CCN exist.CCN_TYPE –One of three types:Bounded Service Area: A certificated service area with closed boundaries that often follow identifiable physical and cultural features such as roads, rivers, streams and political boundaries. Facilities +200 Feet: A certificated service area represented by lines. They include a buffer of a specified number of feet (usually 200 feet). The lines normally follow along roads and may or may not correspond to distribution lines or facilities in the ground.Facilities Only: A certificated service area represented by lines. They are granted for a "point of use" that covers only the customer connections at the time the CCN is granted. Facility only service lines normally follow along roads and may or may not correspond to distribution lines or facilities in the ground.STATUS – For pending dockets check the PUC Interchange Filing Search
What is the GIS In Utility Industry Market Size?
The GIS market in the utility industry size is forecast to increase by USD 3.55 billion at a CAGR of 19.8% between 2023 and 2028. Market expansion hinges on various factors, such as the rising adoption of Geographic Information System (GIS) solutions in the utility sector, the convergence of GIS with Building Information Modeling, and the fusion of Augmented Reality with GIS technology. These elements collectively drive market growth, reflecting advancements in spatial data analytics and technological convergence. The increased adoption of GIS solutions in the utility industry underscores the importance of geospatial data in optimizing infrastructure management. Simultaneously, the integration of GIS with BIM signifies the synergy between spatial and building information for enhanced project planning and management. Additionally, the integration of AR with GIS technology highlights the potential for interactive and interactive visualization experiences in spatial data analysis. Thus, the interplay of these factors delineates the landscape for the anticipated expansion of the market catering to GIS and related technologies.
What will be the size of Market during the forecast period?
Request Free GIS In Utility Industry Market Sample
Market Segmentation
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019 - 2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Geography
North America
Canada
US
Europe
Germany
France
APAC
China
India
Japan
Middle East and Africa
South America
Brazil
Which is the largest segment driving market growth?
The software segment is estimated to witness significant growth during the forecast period. In the utility industry, the spatial context of geographic information systems (GIS) plays a pivotal role in site selection, land acquisition, planning, designing, visualizing, building, and project management. Utilities, including electricity, gas, water, and telecommunications providers, leverage GIS software to efficiently manage their assets and infrastructure. This technology enables the collection, management, analysis, and visualization of geospatial data, derived from satellite imaging, aerial photography, remote sensors, and artificial intelligence. Geospatial AI, sensor technology, and digital reality solutions are integral components of GIS, enhancing capabilities for smart city planning, urban planning, water management, mapping systems, grid modernization, transportation, and green buildings.
Get a glance at the market share of various regions. Download the PDF Sample
The software segment was valued at USD 541.50 million in 2018. Moreover, the geospatial industry continues to evolve, with startups and software solutions driving innovation in hardware, smart city planning, land use management, smart infrastructure planning, and smart utilities. GIS solutions facilitate 4D visualization, enabling stakeholders to overcome geospatial data barriers and make informed decisions. The utility industry's reliance on GIS extends to building information modeling, augmented reality, and smart urban planning, ultimately contributing to the growth of the geospatial technology market.
Which region is leading the market?
For more insights on the market share of various regions, Request Free Sample
North America is estimated to contribute 37% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
How do company ranking index and market positioning come to your aid?
Companies are implementing various strategies, such as strategic alliances, partnerships, mergers and acquisitions, geographical expansion, and product/service launches, to enhance their presence in the market.
AABSyS IT Pvt. Ltd. - The company offers GIS solutions such as remote sensing and computer aided design and drafting solutions for electric and gas utility.
Technavio provides the ranking index for the top 20 companies along with insights on the market positioning of:
AABSyS IT Pvt. Ltd.
Autodesk Inc.
Avineon Inc.
Bentley Systems Inc.
Blue Marble Geographics
Cadcorp Ltd.
Caliper Corp.
Environmental Systems Research Institute Inc.
General Electric Co.
Hexagon AB
Mapbox Inc.
Maxar Technologies Inc.
Mobile GIS Services Ltd.
NV5 Global Inc.
Orbital Insight Inc.
Pitney Bowes Inc.
Schneider Electric SE
SuperMap Software Co. Ltd.
Trimble Inc.
VertiGIS Ltd.
Explore our company rankings and market positioning. Request Free Sample
How can Technavio assist you in ma
This water services dataset contains the following assets: Water pipes (water mains) and water service connections up to a property boundary. The GIS dataset is synchronised with asset data contained in the Council’s Asset Management database AssetFinda. A subset of the GIS dataset has been made available for download. It contains information about Council’s water reticulation network. Asset ownership is recorded in the owner attribute. New as-built information is entered by surveyed coordinates where these are available. Unsurveyed or historic assets were entered using dimensions from boundaries and/or existing assets. Unsurveyed and historic assets may have an accuracy in the order of +/- 10m, although it is hoped that it would generally be better than this. This GIS dataset is updated weekly. Any questions pertaining to this data should be directed to the Waters Asset Management Team at Waipa District Council, email info@waipadc.govt.nz Waipa District Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works. Waipa District Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data. While you are free to crop, export and re-purpose the data, we ask that you attribute the Waipa District Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data: ‘This work is derived entirely or in part from Waipa District Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.’Please note: some Waipa DC owned water supply assets are situated in the Otorohanga District, where Waipa's Te Tahi water treatment plant is located.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data OriginThe dataset provided by Ofwat is rooted in legal records. The dataset is digitised from the official appointments of companies as water and sewage undertakers, which include legally binding documents and maps. These documents establish the specific geographic areas each water company is responsible for. The dataset was sourced from Constituency information: Water companiesData TriageAnonymisation is not required for this dataset, since the data is publicly available and focuses on geographical boundaries of water companies rather than individual or sensitive information. The shapefile serves a specific purpose related to geospatial analysis and regulatory compliance, offering transparent information about the service areas of different water companies as designated by Ofwat.Further ReadingBelow is a curated selection of links for additional reading, which provide a deeper understanding of the water company boundaries datasetOfwat (The Water Services Regulation Authority): As the regulatory body for water and wastewater services in England and Wales, Ofwat's website is a primary source for detailed information about the water industry, including company boundaries.Data.gov.uk: This site provides access to national datasets, including the Water Resource Zone GIS Data (WRMP19), which covers all water resource zones in England. This dataset is crucial for understanding geographical boundaries related to water management.Water UK: As a trade body representing UK water and wastewater service providers, Water UK's website offers insights into the industry's workings, including aspects related to geographical boundaries.Specifications and CaveatsWhen compiling the dataset, the following specifications and caveats were made:This shapefile is intended solely for geospatial analysis. The authoritative legal delineation of areas is maintained in the maps and additional details specified in the official appointments of companies as water and/or sewerage undertakers, along with any alterations to their areas.The shapefile does not encompass data on any structures or properties that, despite being outside the designated boundary, are included in the area, or those within the boundary yet excluded from the area.In terms of geospatial analysis and visual representation, the Mean High Water Line has been utilized to define any boundary extending into the sea, though it's more probable that the actual boundary aligns with the low water mark. Furthermore, islands that are incorporated into the area might not be included in this representation.Ofwat’s data was last updated on 25th May 2022Contact Details If you have a query about this dataset, please email foi@ofwat.gov.uk
Terms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2024. Community and Non-Transient Non-Community Public Water System Service Area (PubV2024_7).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).
This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.
Layers and Tables:
The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).
The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.
Production
Data Universe
Public Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.
All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.
These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.
Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.
A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).
Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.
The service areas were mapped from 2017 to 2022 and may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset and shown below. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped, because their individual municipal service areas are included in this datalayer.
Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. Those highlighted (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) represent regional or joint boards that will not be mapped, because their individual municipal service areas are included in this datalayer.
PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.
Methodologies and Data Sources
Several methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.
Verification Process
Small-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.
Sources of information for estimated drinking water service areas
The following information was used to develop estimated drinking water service areas:
EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of developed parcelsTaken directly from a Master Plan, Water Department Website, Open Space Plan, etc. found onlineCalculated using information from the town on
This online map contains utility infrastructure features published by the Natrona Regional Geospatial Cooperative (NRGC).
Geospatial data about Oregon City, Oregon Water Utilities - Pipes - OC. Export to CAD, GIS, PDF, CSV and access via API.
Water Lines (pipes) within Fuquay-Varina. This is a rather extensive collection of a number of sub-types of water lines, and includes both public and privately owned features. Mainly, there are public water mains, public hydrants legs, private hydrant/fire legs, and private mains/service lines. Water service lines (i.e. service legs from mains to meters) maintained by the Town are only recently being mapped in our GIS system and are limited. When using this data, please pay close attention to WLine_Subtype and OWNEDBY fields. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)
ALL public utility data layers can be downloaded together with this single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.
| https://data-seattlecitygis.opendata.arcgis.com/datasets?q=spu | Lifecycle status: Production | Purpose: to enable open access to SPU GIS data. This website includes many utility datasets from categories such as DSO, Drainage and Wastewater infrastructure, and Storm Infrastructure. Many of this datasets are linked from this website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General service area boundaries of all the water providers in San Jose, CA.
Data is published on Mondays on a weekly basis.
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource represents new contributions to the national water service boundaries dataset, which also functions as the geoconnex.us reference feature set. This resource is managed by a workflow that incorporates community contributions to supplement, and intended to replace polygons available from https://www.hydroshare.org/resource/20b908d73a784fc1a097a3b3f2b58bfb . This workflow is available here: https://github.com/cgs-earth/ref_pws
Lee County Utilities Future Water Service Area.Depicts service areas for the Lee County Utilities water systems throughout which it will provide standard service as required by demand, and within which it will challenge applications by private water utilities to obtain a Certificate of Operation from the Florida Public Service Commission and reject all applications for a county franchise therein.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Description Prompt: This layer (hosted feature layer) depicts the Water Service Area in the City of Canton, GA. This data set is maintained by the City of Canton's GIS division, and is updated on a regular basis to depict the current water service area for utilities. For specific questions about this data or to provide feedback, please contact the City's GIS division: Alaina Ellis GIS Analyst alaina.ellis@cantonga.gov (770) 546-6780 Canton City Hall 110 Academy Street, Canton, GA 30114
This dataset contains water infrastructure locations within the Bellevue service area. The dataset includes individual components such as meters, fittings, valves, fire flow, hydrants, interties, pumps, inlet stations, reservoirs, sampling stations, pipes, casings, vaults, and structures. Data within high-security areas has been redacted to ensure safety and security. This comprehensive dataset is essential for managing, maintaining, and planning the city's water supply and distribution system, as well as for emergency response and infrastructure development purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This point theme represents stormwater features related to the outlet portion of another feature.
The Public Water Suppliers (PWS) geospatial shapefiles are a dataset of non-transient PWS locations, their associated service areas, and the locations of their supply sources. This is a geospatial coverage of the approximate boundaries of public water systems in New Mexico.
Water utility areas in Johnson County