This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.
DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.
DNRGPS does not require installation. Simply run the application .exe
See the DNRGPS application documentation for more details.
Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs
Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.
Prerequisite: .NET 4 Framework
DNR Data and Software License Agreement
Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
The GIS market share in EMEA is expected to increase to USD 2.01 billion from 2021 to 2026, and the market’s growth momentum will accelerate at a CAGR of 8.23%.
This EMEA GIS market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers GIS market in EMEA segmentation by:
Component - Software, data, and services
End-user - Government, utilities, military, telecommunication, and others
What will the GIS Market Size in EMEA be During the Forecast Period?
Download the Free Report Sample to Unlock the GIS Market Size in EMEA for the Forecast Period and Other Important Statistics
The EMEA GIS market report also offers information on several market vendors, including arxiT SA, Autodesk Inc., Bentley Systems Inc., Cimtex International, CNIM SA, Computer Aided Development Corp. Ltd., Environmental Systems Research Institute Inc., Fugro NV, General Electric Co., HERE Global BV, Hexagon AB, Hi-Target, Mapbox Inc., Maxar Technologies Inc., Pitney Bowes Inc., PSI Services LLC, Rolta India Ltd., SNC Lavalin Group Inc., SuperMap Software Co. Ltd., Takor Group Ltd., and Trimble Inc. among others.
GIS Market in EMEA: Key Drivers, Trends, and Challenges
The integration of BIM and GIS is notably driving the GIS market growth in EMEA, although factors such as data viability and risk of intrusion may impede market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the GIS industry in EMEA. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.
Key GIS Market Driver in EMEA
One of the key factors driving the geographic information system (GIS) market growth in EMEA is the integration of BIM and GIS. A GIS adds value to BIM by visualizing and analyzing the data with regard to the buildings and surrounding features, such as environmental and demographic information. BIM data and workflows include information regarding sensors and the placement of devices in IoT-connected networks. For instance, Dubai's Civil Defense Department has integrated GIS data with its automatic fire surveillance system. This information is provided in a matter of seconds on the building monitoring systems of the Civil Defense Department. Furthermore, location-based services offered by GIS providers help generate huge volumes of data from stationary and moving devices and enable users to perform real-time spatial analytics and derive useful geographic insights from it. Owing to the advantages associated with the integration of BIM with GIS solutions, the demand for GIS solutions is expected to increase during the forecast period.
Key GIS Market Challenge in EMEA
One of the key challenges to the is the GIS market growth in EMEA is the data viability and risk of intrusion. Hackers can hack into these systems with malicious intentions and manipulate the data, which could have destructive or negative repercussions. Such hacking of data could cause nationwide chaos. For instance, if a hacker manipulated the traffic management database, massive traffic jams and accidents could result. If a hacker obtained access to the database of a national disaster management organization and manipulated the data to create a false disaster situation, it could lead to a panic situation. Therefore, the security infrastructure accompanying the implementation of GIS software solutions must be robust. Such security threats may impede market growth in the coming years.
Key GIS Market Trend in EMEA
Integration of augmented reality (AR) and GIS is one of the key geographic information system market trends in EMEA that is expected to impact the industry positively in the forecast period. AR apps could provide GIS content to professional end-users and aid them in making decisions on-site, using advanced and reliable information available on their mobile devices and smartphones. For instance, when the user simply points the camera of the phone at the ground, the application will be able to show the user the location and orientation of water pipes and electric cables that are concealed underground. Organizations such as the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C) are seeking investments and are open to sponsors for an upcoming AR pilot project, which seeks to advance the standards of AR technology at both respective organizations. Such factors will further support the market growth in the coming years.
This GIS market in EMEA analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth strategies for 2022-202
The Digital Geologic-GIS Map of the Hye Quadrangle, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (hye_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (hye_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (lyjo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (lyjo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (hye_geology_metadata_faq.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (hye_geology_metadata.txt or hye_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yose_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yose_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yose_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yose_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yose_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yose_geology_metadata_faq.pdf). Please read the yose_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yose_geology_metadata.txt or yose_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Public Land Survey System (PLSS) Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain boundaries for Townships, First Divisions, and Second Divisions.
PLEASE NOTE: These data do not include data over Tasmania. Please see links relevant to that area.
GEODATA TOPO 250K Series 3 is a vector representation of the major topographic features appearing on the 1:250,000 scale NATMAPs supplied in KML format and is designed for use in a range of commercial GIS software. Data is arranged within specific themes. All data is based on the GDA94 coordinate system.
GEODATA TOPO 250K Series 3 is available as a free download product in Personal Geodatabase, ArcView Shapefile or MapInfo TAB file formats. Each package includes data arranged in ten main themes - cartography, elevation, framework, habitation, hydrography, infrastructure, terrain, transport, utility and vegetation. Data is also available as GEODATA TOPO 250K Series 3 for Google Earth in kml format for use on Google Earth TM Mapping Service.
Product Specifications
Themes: Cartography, Elevation, Framework, Habitation, Hydrography, Infrastructure, Terrain, Transport, Utility and Vegetation
Coverage: National (Powerlines not available in South Australia)
Currency: Data has a currency of less than five years for any location
Coordinates: Geographical
Datum: Geocentric Datum of Australia (GDA94)
Formats: Personal Geodatabase, kml, Shapefile and MapInfo TAB
Release Date: 26 June 2006
The Digital Geologic-GIS Map of Gettysburg National Military Park, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (gett_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (gett_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (gett_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (gett_eise_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (gett_eise_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gett_geology_metadata_faq.pdf). Please read the gett_eise_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gett_geology_metadata.txt or gett_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
an index map for the 62 QuickBird tiles (ESRI Shapefile format)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains solar resource data for: direct normal irradiation (DNI), global horizontal irradiation (GHI), diffuse horizontal irradiation data (DIF), and global irradiation for optimally tilted surfaces (GTI), all in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m). Due to the large amount of data, the coverage has been divided into eight segments. Four segments for the North hemisphere: WWN (West-west-north), WN (West-north), EN (East-north), EEN (East-east-north). Analogically four segments for the South hemisphere: WWS, WS, ES, EES. The data is hyperlinked under 'resources' with the following characteristics: DNI LTAy_AvgDailyTotals (GeoTIFF) Data format: raster (gridded), GEOTIFF File size : 343.99 MB For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Area layers of US, Australia, and Canada building footprints for use with GIS mapping software, databases, and web applications.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Address point data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain a point layer of over 48 million addresses in 22 states and the District of Columbia.
SARX[1] is a free ground search and rescue search planning and management tool designed to quickly plan and execute a search for a lost subject. SARX is a suite of custom tools built upon ESRI's ArcGIS Desktop Explorer (AGX)[2], with the goal of providing fast and effective search management, particularly within the first operational period of a search. It is easy to use and integrates well with other mapping and GIS software.
For complete installation instructions and updates of the SARX suite, see this website.
This course will show you where to download the free app and walk you through a hands-on tutorial, preparing you for your first incident regardless of your skill level.
Developed by Alix Bosniere-Vezina – GIS Student, and Paul James Doherty - National Alliance for Public Safety GIS Foundation
Special thanks to Norman Deschamps - Search Manager and GIS Analysis, Tri-County Ground Search and Rescue Association, New Brunswick
[1] To know more: SAR Explorer (SARX)
[2] To know more: ArcGIS Desktop Explorer (AGX)
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.