A listing of web services published from the authoritative East Baton Rouge Parish Geographic Information System (EBRGIS) data repository. Services are offered in Esri REST, and the Open Geospatial Consortium (OGC) Web Mapping Service (WMS) or Web Feature Service (WFS) formats.
Contains:World HillshadeWorld Street Map (with Relief) - Base LayerLarge Scale International Boundaries (v11.3)World Street Map (with Relief) - LabelsDoS Country Labels DoS Country LabelsCountry (admin 0) labels that have been vetted for compliance with foreign policy and legal requirements. These labels are part of the US Federal Government Basemap, which contains the borders and place names that have been vetted for compliance with foreign policy and legal requirements.Source: DoS Country Labels - Overview (arcgis.com)Large Scale International BoundariesVersion 11.3Release Date: December 19, 2023DownloadFor more information on the LSIB click here: https://geodata.state.gov/ A direct link to the data is available here: https://data.geodata.state.gov/LSIB.zipAn ISO-compliant version of the LSIB metadata (in ISO 19139 format) is here: https://geodata.state.gov/geonetwork/srv/eng/catalog.search#/metadata/3bdb81a0-c1b9-439a-a0b1-85dac30c59b2 Direct inquiries to internationalboundaries@state.govOverviewThe Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.3 (published 19 December 2023). The 11.3 release contains updates to boundary lines and data refinements enabling reuse of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.National Geospatial Data AssetThis dataset is a National Geospatial Data Asset managed by the Department of State on behalf of the Federal Geographic Data Committee's International Boundaries Theme.DetailsSources for these data include treaties, relevant maps, and data from boundary commissions and national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process involves analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.Attribute StructureThe dataset uses thefollowing attributes:Attribute NameCC1COUNTRY1CC2COUNTRY2RANKSTATUSLABELNOTES These attributes are logically linked:Linked AttributesCC1COUNTRY1CC2COUNTRY2RANKSTATUS These attributes have external sources:Attribute NameExternal Data SourceCC1GENCCOUNTRY1DoS ListsCC2GENCCOUNTRY2DoS ListsThe eight attributes listed above describe the boundary lines contained within the LSIB dataset in both a human and machine-readable fashion. Other attributes in the release include "FID", "Shape", and "Shape_Leng" are components of the shapefile format and do not form an intrinsic part of the LSIB."CC1" and "CC2" fields are machine readable fields which contain political entity codes. These codes are derived from the Geopolitical Entities, Names, and Codes Standard (GENC) Edition 3 Update 18. The dataset uses the GENC two-character codes. The code ‘Q2’, which is not in GENC, denotes a line in the LSIB representing a boundary associated with an area not contained within the GENC standard.The "COUNTRY1" and "COUNTRY2" fields contain human-readable text corresponding to the name of the political entity. These names are names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the list of Independent States in the World and the list of Dependencies and Areas of Special Sovereignty maintained by the Department of State. To ensure the greatest compatibility, names are presented without diacritics and certain names are rendered using commonly accepted cartographic abbreviations. Names for lines associated with the code ‘Q2’ are descriptive and are not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS are names of independent states. Other names are those associated with dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.The following fields are an intrinsic part of the LSIB dataset and do not rely on external sources:Attribute NameMandatoryContains NullsRANKYesNoSTATUSYesNoLABELNoYesNOTESNoYesNeither the "RANK" nor "STATUS" field contains null values; the "LABEL" and "NOTES" fields do.The "RANK" field is a numeric, machine-readable expression of the "STATUS" field. Collectively, these fields encode the views of the United States Government on the political status of the boundary line.Attribute NameValueRANK123STATUSInternational BoundaryOther Line of International Separation Special Line A value of "1" in the "RANK" field corresponds to an "International Boundary" value in the "STATUS" field. Values of "2" and "3" correspond to "Other Line of International Separation" and "Special Line", respectively.The "LABEL" field contains required text necessarily to describe the line segment. The "LABEL" field is used when the line segment is displayed on maps or other forms of cartographic visualizations. This includes most interactive products. The requirement to incorporate the contents of the "LABEL" field on these products is scale dependent. If a label is legible at the scale of a given static product a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field is not a line labeling field but does contain the preferred description for the three LSIB line types when lines are incorporated into a map legend. Using the "CC1", "CC2", or "RANK" fields for labeling purposes is prohibited.The "NOTES" field contains an explanation of any applicable special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, any limitations regarding the purpose of the lines, or the original source of the line. Use of the "NOTES" field for labeling purposes is prohibited.External Data SourcesGeopolitical Entities, Names, and Codes Registry: https://nsgreg.nga.mil/GENC-overview.jspU.S. Department of State List of Independent States in the World: https://www.state.gov/independent-states-in-the-world/U.S. Department of State List of Dependencies and Areas of Special Sovereignty: https://www.state.gov/dependencies-and-areas-of-special-sovereignty/The source for the U.S.—Canada international boundary (NGDAID97) is the International Boundary Commission: https://www.internationalboundarycommission.org/en/maps-coordinates/coordinates.phpThe source for the “International Boundary between the United States of America and the United States of Mexico” (NGDAID82) is the International Boundary and Water Commission: https://catalog.data.gov/dataset?q=usibwcCartographic UsageCartographic usage of the LSIB requires a visual differentiation between the three categories of boundaries. Specifically, this differentiation must be between:- International Boundaries (Rank 1);- Other Lines of International Separation (Rank 2); and- Special Lines (Rank 3).Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary.Additional cartographic information can be found in Guidance Bulletins (https://hiu.state.gov/data/cartographic_guidance_bulletins/) published by the Office of the Geographer and Global Issues.ContactDirect inquiries to internationalboundaries@state.gov.CreditsThe lines in the LSIB dataset are the product of decades of collaboration between geographers at the Department of State and the National Geospatial-Intelligence Agency with contributions from the Central Intelligence Agency and the UK Defence Geographic Centre.Attribution is welcome: U.S. Department of State, Office of the Geographer and Global Issues.Changes from Prior ReleaseThe 11.3 release is the third update in the version 11 series.This version of the LSIB contains changes and accuracy refinements for the following line segments. These changes reflect improvements in spatial accuracy derived from newly available source materials, an ongoing review process, or the publication of new treaties or agreements. Notable changes to lines include:• AFGHANISTAN / IRAN• ALBANIA / GREECE• ALBANIA / KOSOVO• ALBANIA/MONTENEGRO• ALBANIA / NORTH MACEDONIA• ALGERIA / MOROCCO• ARGENTINA / BOLIVIA• ARGENTINA / CHILE• BELARUS / POLAND• BOLIVIA / PARAGUAY• BRAZIL / GUYANA• BRAZIL / VENEZUELA• BRAZIL / French Guiana (FR.)• BRAZIL / SURINAME• CAMBODIA / LAOS• CAMBODIA / VIETNAM• CAMEROON / CHAD• CAMEROON / NIGERIA• CHINA / INDIA• CHINA / NORTH KOREA• CHINA / Aksai Chin• COLOMBIA / VENEZUELA• CONGO, DEM. REP. OF THE / UGANDA• CZECHIA / GERMANY• EGYPT / LIBYA• ESTONIA / RUSSIA• French Guiana (FR.) / SURINAME• GREECE / NORTH MACEDONIA• GUYANA / VENEZUELA• INDIA / Aksai Chin• KAZAKHSTAN / RUSSIA• KOSOVO / MONTENEGRO• KOSOVO / SERBIA• LAOS / VIETNAM• LATVIA / LITHUANIA• MEXICO / UNITED STATES• MONTENEGRO / SERBIA• MOROCCO / SPAIN• POLAND / RUSSIA• ROMANIA / UKRAINEVersions 11.0 and 11.1 were updates to boundary lines. Like this version, they also contained topology fixes, land boundary terminus refinements, and tripoint adjustments. Version 11.2 corrected a few errors in the attribute data and ensured that CC1 and CC2 attributes are in alignment with an updated version of the Geopolitical Entities, Names, and Codes (GENC) Standard, specifically Edition 3 Update 17.LayersLarge_Scale_International_BoundariesTerms of
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information Systems (GIS) Platform market is experiencing robust growth, projected to reach a market size of $4078.2 million in 2025. While the provided CAGR is missing, considering the widespread adoption of GIS across various sectors like government, utilities, and commercial businesses, coupled with advancements in cloud-based GIS and increasing demand for spatial analytics, a conservative estimate of the Compound Annual Growth Rate (CAGR) between 2025 and 2033 would be around 7-9%. This suggests a significant expansion of the market over the forecast period. Key drivers include the rising need for efficient resource management, improved infrastructure planning, precise location-based services, and the growing adoption of big data analytics combined with location intelligence. The market is segmented by type (Desktop GIS, Web Map Service GIS, Others) and application (Government & Utilities, Commercial Use), reflecting the diverse applications of GIS technology. Leading players like Environmental Systems Research Institute (Esri), Hexagon, Pitney Bowes, and SuperMap are shaping the market landscape through continuous innovation and strategic partnerships. The North American market currently holds a significant share due to high technology adoption and substantial investments in GIS infrastructure, but rapid growth is anticipated in Asia Pacific regions like China and India driven by urbanization and infrastructure development. The increasing availability of affordable high-resolution imagery and data fuels further expansion. The continued integration of GIS with other technologies like AI and IoT is expected to unlock new applications and further drive market growth. Challenges include the high initial investment costs for sophisticated GIS solutions, the need for skilled professionals to manage and interpret data, and ensuring data security and privacy. However, the benefits of improved decision-making, optimized resource allocation, and enhanced operational efficiency are expected to outweigh these challenges, contributing to the sustained expansion of the GIS Platform market throughout the forecast period. The market's future trajectory remains positive, fueled by technological advancements and the increasing reliance on location intelligence across various industries.
This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This page contains the help documentation for the GIS Open Data Portal. Refer to https://gisdata-csj.opendata.arcgis.com/pages/help.
This dataset contains model-based census tract level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
The North Carolina state and local government metadata profile as adopted by the NC Geographic Information Coordinating Council. The document and other information can be found at: https://it.nc.gov/documents/files/gicc-smac-state-local-gov-metadata-profile.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Landmarks and Government BuildingsThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays Cemeteries, Post Offices, City/Town Halls, Courthouses, State Capitols, State Supreme Courts, The White House, U.S. Capitol, U.S. Supreme Court, Historic Sites/Points of Interest, and National Symbols/Monuments in the U.S. Per the USGS, "Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations."Supreme Court of WyomingData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Landmarks & Government Buildings) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 135 (USGS National Structures Dataset - USGS National Map Downloadable Data Collection)OGC API Features Link: (Landmark Structures - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: The National MapFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes."For other NGDA Content: Esri Federal Datasets
From the US Census Bureau: "The cartographic boundary files are simplified representations of selected geographic areas from the Census Bureau’s MAF/TIGER geographic database. These boundary files are specifically designed for small scale thematic mapping."
Lincoln/Lancaster County GIS viewer online mapping applicaton.
The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in working with census tract and block group data that splits by jurisdiction boundaries (summary levels 080, 090, and 091). The GIS shape files are most helpful when linked with census tract and block group data downloaded from the census standard tabulation data, CDBG low/mod area data (summary level 090), or the CHAS 2000 data (summary levels 080 and 091).
The GIS Web Mapping Application is design to have the look and feel as Google Earth. The primary functionality is to provide the user information about FRA's rail lines, rail crossings, freight stations, and mileposting.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Government Information Construction Service market is experiencing robust growth, driven by increasing government investments in digital infrastructure, the rising adoption of cloud-based solutions for enhanced data security and accessibility, and the growing need for efficient and streamlined information management systems. The market's expansion is further fueled by the imperative to improve citizen services through digital channels and the ongoing development of smart city initiatives. While on-premises solutions still hold a significant share, the cloud-based segment is witnessing accelerated growth, projected to dominate the market in the coming years due to its scalability, cost-effectiveness, and enhanced accessibility. Regional variations exist, with North America and Europe currently leading the market due to advanced technological infrastructure and high government spending on digital transformation projects. However, Asia-Pacific is poised for substantial growth, driven by rapid urbanization and increasing government initiatives focused on digitalization and e-governance. Challenges include data security concerns, the need for robust cybersecurity measures, and the complexities associated with integrating legacy systems with new cloud-based solutions. This requires significant investment in training and skilled personnel to manage and maintain these systems effectively. The market is highly competitive, with established players like IBM, Microsoft, and SAP competing with specialized service providers and consulting firms such as Accenture and Deloitte. The forecast period (2025-2033) anticipates continued expansion, propelled by ongoing technological advancements and increasing government focus on data-driven decision-making. The shift towards advanced analytics and artificial intelligence (AI) in government operations is another key growth driver, enabling more efficient resource allocation, improved public services, and better citizen engagement. Furthermore, the increasing adoption of big data technologies and the Internet of Things (IoT) within government infrastructure will further drive the demand for robust information construction services. However, potential restraints include budgetary constraints in some regions, concerns regarding data privacy and compliance, and the need for seamless interoperability across different government agencies and systems. The market will witness a dynamic landscape with ongoing mergers and acquisitions, strategic partnerships, and the emergence of innovative solutions catering to specific government needs. Competitive differentiation will increasingly rely on the ability to provide secure, scalable, and user-friendly solutions that address the evolving challenges of public sector information management.
The California State Lands Commission (CSLC) was created by the California Legislature in 1938 and given the authority and responsibility to manage certain public lands within the state. The public lands under the Commission’s jurisdiction are of two distinct types—sovereign lands acquired upon California’s admission into the Union in 1850; and certain federally granted lands including school lands, and swamp and overflowed lands. For purposes of this GIS data, sovereign lands are considered to be further divided into two general categories—fixed-boundary sovereign lands and ambulatory-boundary sovereign lands. The following lands are included in this data: Portions of the ambulatory-boundary for state sovereign lands at a specific point in time, for portions of the San Joaquin River. NOT INCLUDED IN THIS DATA: School lands: These are what remains of nearly 5.5 million acres throughout the state originally granted to California by Congress in 1853 to benefit public education. Fixed-boundary sovereign lands: These are sovereign, public trust lands having fixed boundaries as the result of land exchanges, boundary line agreements or court orders. Swamps and overflowed lands: These are what remain of federal lands granted to California by Congress in 1850 to encourage reclamation and development of agricultural lands. ALSO NOT INCLUDED IN THIS DATA: Ownership details within the U.S. Government meanders of Owens Lake. THIS DATA SUPERSEDES all previously published GIS information with respect to the above described state-owned lands under the jurisdiction of the CSLC.
This data set contains geolocation information of the infrastructure locations for the SnowEx20 Intensive Observation Period (IOP) and Time Series (TS) campaigns. Available scientific infrastructure locations in this data set are tower and sensor locations, aircraft flight lines, planned and actual snow pit locations, and time-lapse camera locations. Additionally, this data set contains areal snow depth and tree density classification matrix over the Grand Mesa, CO study area.
The sixteen regional councils in North Carolina serve their member governments through a broad range of services. Some of those are traditional: delivery of federal and state programs in aging, transportation planning, workforce development, community planning – GIS mapping services and convening of regional leaders for problem solving. A more robust range of services has emerged through member demand for administrative and financial services, interim executive management, financial administration, human services program delivery and economic development.For more informaiton, visit https://www.ncregions.org/regional-councils/
This dataset includes all 7 metro counties that have made their parcel data freely available without a license or fees.
This dataset is a compilation of tax parcel polygon and point layers assembled into a common coordinate system from Twin Cities, Minnesota metropolitan area counties. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.
NOTICE: The standard set of attributes changed to the MN Parcel Data Transfer Standard on 1/1/2019.
https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html
See section 5 of the metadata for an attribute summary.
Detailed information about the attributes can be found in the Metro Regional Parcel Attributes document.
The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties have polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. One primary example of this is the condominium, though some counties stacked polygons for condos. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.
The polygon layer is broken into individual county shape files. The points layer is provided as both individual county files and as one file for the entire metro area.
In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.
This is a MetroGIS Regionally Endorsed dataset.
Additional information may be available from each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person at each individual county.
Anoka = http://www.anokacounty.us/315/GIS
Caver = http://www.co.carver.mn.us/GIS
Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx
Hennepin = https://gis-hennepin.hub.arcgis.com/pages/open-data
Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data
Scott = http://opendata.gis.co.scott.mn.us/
Washington: http://www.co.washington.mn.us/index.aspx?NID=1606
This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the 2020 Census place boundary file in a GIS system to produce maps for 40 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
A listing of web services published from the authoritative East Baton Rouge Parish Geographic Information System (EBRGIS) data repository. Services are offered in Esri REST, and the Open Geospatial Consortium (OGC) Web Mapping Service (WMS) or Web Feature Service (WFS) formats.