Explore the progression of average salaries for graduates in Civil Engineering; Gis Graduate Program from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Civil Engineering; Gis Graduate Program relative to other fields. This data is essential for students assessing the return on investment of their education in Civil Engineering; Gis Graduate Program, providing a clear picture of financial prospects post-graduation.
Count of high school graduates for each public school in Alaska. Data covers the School Year 2013 to the present. Each year's count includes students graduating at any point during the school year (July 1 to June 30).Source: Alaska Department of Education & Early Development
This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.
This webmap displays the percent of population 25 years and over whose highest education completed is associate's degree. This webmap also contains the following layers: City of Corona Limits, State Boundary, County Boundary and Tract Boundary.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Civil Engineering; Gis Graduate Program. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Civil Engineering; Gis Graduate Program. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
The data release for the geologic and structure map of the Choteau 1 x 2 degree quadrangle, western Montana, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-1300 (Mudge and others, 2001). The updated digital data present the attribute tables and geospatial features (lines and polygons) in the format that meets GeMS requirements. This data release presents geospatial data for the geologic map that is published as two plates. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 4.2 million acre, geologically complex Choteau 1 x 2 degree quadrangle, at a publication scale of 1:250,000. The map covers primarily Lewis and Clark, Teton, Powell, Missoula, Lake, and Flathead Counties, but also includes minor parts of Cascade County. These GIS data supersede those in the report: Mudge, M.R., Earhart, R.L., Whipple, J.W., Harrison, J.E., Munts, S.R., and Silkwood, J.T., 2001, Geologic and structure map of the Choteau 1 x 2 degree quadrangle, western Montana: a digital database: U.S. Geological Survey Miscellaneous Investigations Series Map I-1300, version 1.0, 38 p., scale 1:250,000, https://pubs.er.usgs.gov/publication/i1300.
This linear chart displays the number of PERM cases filed for graduates in Civil Engineering; Gis Graduate Program from 2020 to 2023, highlighting the trends and changes in sponsorship over the years. It provides a deep dive into how graduates in this specific major have engaged with potential employers for permanent residency in the U.S., illustrating the major’s effectiveness in connecting students with career opportunities that lead to permanent residency
The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
A fifteen degree grid in latitude and longitude covering the entire world
Explore the progression of average salaries for graduates in Masters Of Science In Gis Technology from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Masters Of Science In Gis Technology relative to other fields. This data is essential for students assessing the return on investment of their education in Masters Of Science In Gis Technology, providing a clear picture of financial prospects post-graduation.
Explore the progression of average salaries for graduates in Master'S Degree In Geography With Concentration In Gis from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Master'S Degree In Geography With Concentration In Gis relative to other fields. This data is essential for students assessing the return on investment of their education in Master'S Degree In Geography With Concentration In Gis, providing a clear picture of financial prospects post-graduation.
A six degree grid in latitude and longitude covering the entire world
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geography (Gis Concentration). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geography (Gis Concentration). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Masters Of Science In Gis Technology. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Masters Of Science In Gis Technology. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
The data release for the geologic terranes of the Hailey 1 x 2 degrees quadrangle and the western part of the Idaho Falls 1 x 2 degrees quadrangle, south-central Idaho is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Bulletin 2064-A (Worl and Johnson, 1995). The updated digital data present the attribute tables and geospatial features (lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plate and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 6.1 million-acre, geologically complex Hailey quadrangle and the western part of the Idaho Falls quadrangle, at a publication scale of 1:250,000. The map covers primarily Blaine, Camas, Custer and Elmore Counties, but also includes minor parts of Ada, Butte, Gooding, Lincoln, and Minidoka Counties. These GIS data supersede those in the interpretive report: Worl, R.G. and Johnson, K.M., 1995, Geology and mineral deposits of the Hailey 1 degree x 2 degrees quadrangle and the western part of the Idaho Falls 1 degree x 2 degrees quadrangle, south-central Idaho - an overview: U.S. Geological Survey, Bulletin 2064-A, scale 1:250,000, https://pubs.usgs.gov/bul/b2064-a/.
Raw 1/10th Degree Wind Force Probability data for all wind speeds.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Regression analysis for the degree of human impact.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Gis. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Gis. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Consistency of response to degree of human impact.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NOTE: This dataset is an older dataset that we have removed from the SGID and 'shelved' in ArcGIS Online. There may (or may not) be a newer vintage of this dataset in the SGID.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geographic Information Science (Gis). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geographic Information Science (Gis). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
Explore the progression of average salaries for graduates in Civil Engineering; Gis Graduate Program from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Civil Engineering; Gis Graduate Program relative to other fields. This data is essential for students assessing the return on investment of their education in Civil Engineering; Gis Graduate Program, providing a clear picture of financial prospects post-graduation.