MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This raster provides the average groundwater elevations in NAVD88 for the month of October, based on the results of the U.S. Geological Survey groundwater model for Miami-Dade – Urban Miami-Dade (UMD), used to predict groundwater levels for year 2040, considering sea level rise above the baseline conditions, using NRCIII forecast, which assumes a 1.0 ft sea-level rise increase, from a year 2009 -0.9 ft mean sea-level NAVD88 to a 2040 0.1 ft.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project consists of 11 files: 1) a zipped folder with a geodatabase containing seven raster files and two shapefiles, 2) a zipped folder containing the same layers found in the geodatabase, but as standalone files, 3) 9 .xml files containing the metadata for the spatial datasets in the zipped folders. These datasets were generated in ArcPro 3.0.3. (ESRI). Six raster files (drainaged, geology, nlcd, precipitation, slope, solitexture) present spatially distributed information, ranked according to the relative importance of each class for groundwater recharge. The scale used for these datasets is 1-9, where low scale values are assigned to datasets with low relative importance for groundwater recharge, while high scale values are assigned to datasets with high relative importance for groundwater recharge. The seventh raster file contains the groundwater recharge potential map for the Anchor River Watershed. This map was calculated using the six raster datasets mentioned previously. Here, the values assigned represent Very Low to Very High groundwater recharge potential (scale 1 - 5, 1 being Very Low and 5 being Very High). Finally, the two shapefiles represent the groundwater wells and the polygons used for model validation. This data is part of the manuscript titled: Mapping Groundwater Recharge Potential in High Latitude Landscapes using Public Data, Remote Sensing, and Analytic Hierarchy Process, published in the journal remote sensing.
A dataset of well information and geospatial data was developed for 426 U.S. Geological Survey (USGS) observation wells in Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. An extensive list of attributes is included about each well, its location, and water-level history to provide the public and water-resources community with comprehensive information on the USGS well network in New England and data available from these sites. These data may be useful for evaluating groundwater conditions and variability across the region. The well list and site attributes, which were extracted from USGS National Water Information System (NWIS), represent all of the active wells in the New England network up to the end of 2017, and an additional 45 wells that were inactive (discontinued or replaced by a nearby well) at that time. Inactive wells were included in the database because they (1) contain periods of water-level record that may be useful for groundwater assessments, (2) may become active again at some point, or (3) are being monitored by another agency (most discontinued New Hampshire wells are still being monitored and the data are available in the National Groundwater Monitoring Network (https://cida.usgs.gov/ngwmn/index.jsp). The wells in this database have been sites of water-level data collection (periodic levels and/or continuous levels) for an average of 31 years. Water-level records go back to 1913. The groundwater-level statistics included in the dataset represent hydrologic conditions for the period of record for inactive wells, or through the end of water year 2017 (September 30, 2017) for active wells. Geographic Information Systems (GIS) data layers were compiled from various sources and dates ranging from 2003 to 2018. These GIS data were used to calculate attributes related to topographic setting, climate, land cover, soil, and geology giving hydrologic and environmental context to each well. In total, the data include 90 attributes for each well. In addition to site number and station name, attributes were developed for site information (15 attributes); groundwater-level statistics through water year 2017 (16 attributes); well-construction information (9 attributes); topographic setting (11 attributes); climate (2 attributes); land use and cover (17 attributes); soils (4 attributes); and geology (14 attributes). Basic well and site information includes well location, period of record, well-construction details, continuous versus intermittent data collection, and ground altitudes. Attributes that may influence groundwater levels include: well depth, location of open or screened interval, aquifer type, surficial and bedrock geology, topographic position, flow distance to surface water, land use and cover near the well, soil texture and drainage, precipitation, and air temperature.
The Groundwater Quality Protection Act of 1989 provided for development of the EDMS to manage groundwater quality data. In 1992, the Groundwater Quality Council completed Idaho's Groundwater Quality Plan. Policy V-E of the plan addresses the creation of the Environmental Data Management system and states: "All data that reside in the publicly funded Environmental [Data] Management System will be accessible to the general public consistent with the requirements of the Idaho Public Records Act.The Idaho Groundwater Protection Interagency Cooperative Agreement of 2008 establishes EDMS as the repository for groundwater quality data to facilitate cooperative groundwater protection programs among multiple state agencies to be managed by IDWR. EDMS data can be viewed in a web mapping application available from the Idaho Department of Water Resources (IDWR) website.The following Idaho agencies are contributors to EDMS:Agency AbbreviationAgency NameAgency LinkISDAIdaho Dept of Agriculturehttp://www.agri.idaho.gov/IDEQIdaho Dept of Environmental Qualityhttp://www.deq.idaho.gov/IDWRIdaho Dept of Water Resourceshttps://idwr.idaho.gov/INLIDEQ Idaho National Laboratory Oversighthttp://www.deq.idaho.gov/inl-oversight.aspx Some data stored in the EDMS system may not be sufficient for research depending on lab methodologies and/or field sampling techniques. To obtain additional sample details, please contact the contributing agency directly.
Geodatabase compilation of Wyoming Water Development Commission Groundwater River Basin plan GIS Data, courtesy of the Wyoming State Geological Survey.
IDWR maintains a groundwater level database containing data primarily collected by IDWR, but also includes data gathered by the USGS, USBR, and other public and private entities. Please reach out to these other entities to obtain their full complete record, as not all values are present in this database (IDWR can provide a full list of data contributors upon request). IDWR staff manually measure the "depth to water" in wells throughout Idaho. Pressure transducers in many wells provide near-continuous water level measurements. IDWR strives to create complete and accurate data and may revise these data when indicated.
“Groundwater Level Data: All Historic Data” includes all well data managed in IDWR’s internal database, regardless of current well status. For example, historic data from discontinued, abandoned, or inactive wells are contained in this dataset. IDWR’s water level data are also hosted in the Groundwater Data Portal (https://idwr-groundwater-data.idaho.gov/), which displays only actively monitored wells.
The three files included in this download are 1) discrete (manual) depth to water measurements 2) continuous* (pressure transducer) depth to water measurements, and 3) the associated well metadata.
*The continuous measurements data have been condensed to display only the shallowest daily pressure transducer measurements. Complete datasets are available upon request.
A comprehensive picture, at European Union scale, of the aquifers and their characteristics is available in digital form. In 1982, a study by the European Commission provided a complete catalogue of national water resources for several Member States of the European Union (Belgium, Federal Republic of Germany, Denmark, France, Ireland, Italy, Luxembourg, Netherlands and United Kingdom).
This catalogue comprised a series of groundwater resources maps of Europe, at scale 1:500,000 ; there were 38 map sheets covering four themes:
-Inventory of aquifers; -Hydrogeology of aquifers; -Groundwater abstraction; -Potential additional groundwater resources.
[Summary provided by the European Union Joint Research Center.]
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This feature class is updated every business day using Python scripts and the WellNet database. Please disregard the "Date Updated" field as it does not keep in sync with DWR's internal enterprise geodatabase updates. The NDWR's water monitoring database contains information related to sites for groundwater measurements. These data are used by NDWR to assess the condition of the groundwater and surface water systems over time and are available to the public on NDWR’s website. Groundwater measurement sites are chosen based on physical location and access considerations, permit terms, and to maximize the distribution of measurement points in a given basin.Groundwater monitoring sites are typically chosen based on spatial location, access, and period of record considerations. When possible NDWR tries to have a distribution of monitoring locations within a given hydrographic area. The entity who does the monitoring depends on the site – for example, some mines have well fields where they collect data and submit those data to NDWR as a condition of their monitoring plan – and some sites are monitored by NDWR staff annually or more frequently. While people can volunteer to have their well monitored, more often the NDWR staff who measure water levels recommend an additional site or staff in the office recommend alternate sites. The Chief of the Hydrology Section will review the recommendations and make a final decision on adding/changing a site. This dataset is updated every business day from a non-spatial SQL Server database using lat/long coordinates to display location. This feature class participates in a relationship class with a groundwater measure table joined using the sitename field. This dataset contains both active and inactive sites. Measurement data is provided by reporting agencies and by regular site visits from NDWR staff. For website access, please see the Water Levels site at water.nv.gov/WaterLevelData.aspx
Groundwater quality data and related groundwater well information available on the page was queried from the GAMA Groundwater information system (GAMA GIS). Data provided represent a collection of groundwater quality results from various federal, state, and local groundwater sources. Results have been filtered to only represent untreated sampling results for the purpose of characterizing ambient conditions. Data have been standardized across multiple data sets including chemical names and units. Standardization has not been performed for chemical result modifier and others (although we are working currently to standardize most fields). Chemicals that have been standardized are included in the data sets. Therefore, other chemicals have been analyzed for but are not included in GAMA downloads. Groundwater samples have been collected from well types including domestic, irrigation, monitoring, municipal. Wells that cannot accurately be attributed to a category are labeled as "water supply, other". For additional information regarding the GAMA GIS data system please reference our factsheet.
The aquifer risk map is being developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding. This layer contains summarized water quality risk per census block group, square mile section, and well point. The overall census block group water quality risk is based on five risk factors (1. the count of chemicals with a long-term average (20 year) or recent result (within 2 years) above the MCL, 2. the count of chemicals with a long-term average (20 year) or recent result (within 2 years) within 80% of the MCL, 3. the average magnitude or results above the MCL, 4. the percent area with chemicals above the MCL, and 5. the percent area with chemicals within 80% of the MCL). The specific chemicals that contribute to these risk factors are listed as well. Higher values for each individual risk factor contribute to a higher overall score. The scores are converted to percentiles to normalize the results. Higher percentiles indicate higher water quality risk. The water quality data is based on depth-filtered, de-clustered water quality results from public and domestic supply wells, collected following a similar methodology as the Domestic Well Needs Assessment White Paper. The methodology used to calculate the risk percentiles is outlined in the Aquifer Risk Map Methodology. To provide comments or feedback on this map, please email SAFER@waterboards.ca.gov or Emily.Houlihan@Waterboards.ca.gov.Methodology for the draft aquifer risk map available for download.
A Groundwater Nitrate Decision Support Tool (GW-NDST) for wells in Wisconsin was developed to assist resource managers with assessing how legacy and possible future nitrate leaching rates, combined with groundwater lag times and potential denitrification, influence nitrate concentrations in wells (Juckem et al. 2024). The GW-NDST relies on several support models, including machine-learning models that require numerous GIS input files. This data release contains all GIS files required to run the GW-NDST and its machine-learning support models. The GIS files are packaged into three ZIP files (WI_County.zip, WT-ML.zip, and WI_Buff1km.zip) which are contained in this data release. Before running the GW-NDST, these ZIP files need to be downloaded and unzipped inside the "data_in/GIS/" subdirectory of the GW-NDST. The GW-NDST can be downloaded from the official software release on GitLab (https://doi.org/10.5066/P13ETB4Q). Further instructions for running the GW-NDST, and for acquiring requisite files, can be found in the software's readme file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GIS shape file of annual water table depth counts - CONUS
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
CDFW BIOS GIS Dataset, Contact: Amy Lyons, Description: The purpose of the NCCAG Wetland data set is to identify wetlands, streams, seeps, and springs that are commonly associated with groundwater in Californias 517 Groundwater Basins defined in Bulletin 118 (2016). The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 2.1, dated March 9, 2016.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013. The source dataset ia identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
Displays the original Hydstra measurement (HYDMEAS) tabular data records (as stored in the Hydstra software platform) in a GIS format for interpretation and analysis.
Analysis completed on this dataset includes extracts to determine location and status of current monitoring bores:
HYDMEAS - original tabular database file (dbf) showing groundwater levels
HYDMEAS_XY_all - displays all original tabular data in GIS shapefile format
HYDMEAS_unique_bores - shows one record for each unique bore station ID
HYDMEAS_2008 - All HYDMEAS data from 2008 or later
HYDMEAS_2008to2013_mulitple_reading - All HYDMEAS data from 2008 or later which has been monitored twice or more (in that period), produced to estimate groundwater level monitoring bores
National Groundwater Information System (NGIS) data supplied as a comparison of HYDMEAS monitoring estimates.
Hydstra is a water resources time series data management system developed by KISTERS Pty Ltd.
Provide spatial distribution of groundwater level monitoring status and reading for New South Wales.
HYDMEAS - original tabular data
HYDMEAS_XY_all - displays all original tabular data in GIS format - Displayed as XY in ArcGIS based on Lat and Long attributes and exported as a point shapefile
HYDMEAS_unique_bores - shows one record for each unique bore ID - Dissolved HYDMEAS_XY_all based on STATION field
HYDMEAS_2008 - All HYDMEAS data from 2008 or later - Selected based on DATE field
HYDMEAS_2008to2013_mulitple_reading - All HYDMEAS data from 2008 or later which has been monitored twice or more (in that period), produced to estimate groundwater level monitoring bores - HYDMEAS_2008 dataset dissolved based on STATION and a count field added. Only bores with count of 2 or more were retained
Bioregional Assessment Programme (2014) GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office of Water - Nov2013. Bioregional Assessment Derived Dataset. Viewed 12 March 2019, http://data.bioregionalassessments.gov.au/dataset/d414c703-aabd-43af-81e0-30aab4d9dfb1.
The map graphic image at https://www.sciencebase.gov/catalog/file/get/63140561d34e36012efa2b7f?name=arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about 31,000 wells and springs in 49 states compiled by the United States Geological Survey (USGS). The map graphic illustrates an updated version of figure 1 from Ryker (2001). Cited Reference: Ryker, S.J., Nov. 2001, Mapping arsenic in groundwater-- A real need, but a hard problem: Geotimes Newsmagazine of the Earth Sciences, v. 46 no. 11, p. 34-36 at http://www.agiweb.org/geotimes/nov01/feature_Asmap.html. An excel tabular data file, a txt file, along with a GIS shape file of arsenic concentrations (20,043 samples collected by the USGS) for a subset of the sites shown on the map. Samples were collected between 1973 and 2001 and are provided for download.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Groundwater in Iraq, Water level in Iraq, Water depth in Iraq, GIS, shapefile, TIFF file, QGIS, Groundwater data, Water table of Iraq, Hydrology, GIS technology, Observation wells, GRACE satellite. Iraq, Baghdad.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The data within this data release presents information used to characterize the groundwater-flow system and the development of a groundwater-flow model in the active model area. Conceptual and numerical models of groundwater flow were developed by the U.S. Geological Survey Washington Water Science Center, in close cooperation with 18 water-resource agencies and stakeholders, to assess the potential hydrologic and anthropogenic impacts to groundwater and the connected surface-water resources.
A Groundwater Body (GWB) under the Water Framework Directive (WFD) Art. 2 is defined as a distinct volume of groundwater within an aquifer or aquifers, whereas an aquifer is defined as a geological layer with significant groundwater flow. This definition of a GWB allows a wide scope of interpretations. EU Member States (MS) are under obligation to report the GWBs including the results of the GWB survey periodically according to the schedule of the WFD. Reportnet is used for the submission of GWB data to the EEA by MS and includes spatial data as GIS polygons and GWB characteristics in an XML schema.
The WISE provisional reference GIS WFD Dataset on GWBs combines spatial data consisting of several shape files and certain GWB attributes in a single table submitted by the MS according to Art. 13. The GWBs are divided into horizons, which represent distinct vertical layers of groundwater resources. All GWBs assigned to a certain horizon from one to five are merged into one shape file. GWBs assigned to horizons six or seven are combined in a single further shape file. Another two shape files comprise the GWBs of Reunion Island in the southern hemisphere and the GWBs from Switzerland as a non EU MS, all of which assigned to horizon 1.
The dbf tables of the shape files include the columns “EU_CD_GW” as the GWB identifier and “Horizon” describing the vertical positioning. The polygon identifier “Polygon_ID” was added subsequently, because some GWBs consist of several polygons with identical “EU_CD_GW”even in the same horizon. Some further GWB characteristics are provided with the Microsoft Excel file “GWB_attributes_2012June.xls” including the column “EU_CD_GW”, which serves as a key for joining spatial and attribute data. There is no corresponding spatial data for GWBs in the Microsoft Excel table without an entry in column “EU_CD_GW”. The spatial resolution is given for about a half of the GWBs in the column “Scale” of the xls file, which is varying between the MS from 1 : 10,000 to 1 : 1,000,000 and mostly in the range from 1 : 50,000 to 1 : 250,000. The processing of some of the GWB shape files by GIS routines as clip or intersect in combination with a test polygon resulted in errors. Therefore a correction of erroneous topological features causing routine failures was carried out. However, the GWB layer includes a multitude of in parts very tiny, distinct areas resulting in a highly detailed or fragmented pattern. In certain parts topological inconsistencies appear quite frequently and delineation methodologies are currently varying between the MS in terms of size and three dimensional positioning of GWBs. This version of the dataset has to be considered as a first step towards a consistent GWB picture throughout Europe, but it is not yet of a sufficient quality to support spatial analyses i.e. it is not a fully developed reference GIS dataset. Therefore, the layer is published as a preliminary version and use of this data is subject to certain restrictions outlined in the explanatory notes.
It should be underlined that the methodology used is still under discussion (Working Group C -Groundwater) and is not fully harmonised throughout the EU MS.
For the external publication the whole United Kingdom has to be removed due to licensing restrictions.
All well locations from all datasets standardized on the GAMA Program's Groundwater Information System (GAMA GIS). This is a replacement of previous versions, updated quarterly. Authoritative version. WGS 84.All groundwater wells on GAMA Groundwater Information System, accessed April 24, 2023. Sources of data include (as indicated in GM_DATA_SOURCE field):Geotracker: Wells sampled under regulated activities like cleanup and remediation. These are accessible through the California State Water Resources Control Board Geotracker web site.USGS: Wells sampled and analyzed by the U.S. Geological Survey (USGS) through the Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project.GAMA: Wells sampled by California State Water Resources Control Board staff for the GAMA Program Domestic Well Project.DDW: Division of Drinking Water (DDW) wells sampled and regulated for delivered water quality under DDW oversight.DPR: Wells sampled by the Department of Pesticide Regulation (DPR) groundwater program.WDL: Wells in the Department of Water Resources (DWR) water quality sampling network in their water data library.LLNL: Wells sampled for groundwater age, isotopes, or noble gas for the GAMA Program by Lawrence Livermore National Laboratory (LLNL).NWIS: Wells sampled by the USGS and accessible via the National Water Information System (NWIS).UC Davis: Location of wells gathered from multiple local entities for use in the UC Davis Nitrate Report, under agreement with the GAMA Program.LOCALGW: Wells sampled under various local groundwater projects. As of July 30, 2019, this only includes the domestic sampling completed by the Central Coast Regional Water Quality Control Board. ‘GAMA_LOCALGW: Wells sampled under local groundwater projects, generally sampled from private wells from various private and governmental organizations. Data was submitted through the GAMA Data Connection Portal.The field, GM_DATASET_NAME can also help explain the source of the dataset.The corresponding map image layer for these well locations can be found at the following link: All Wells on the GAMA Groundwater Information System - Overview (ca.gov)Direct any questions to: GAMA@waterboards.ca.gov.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This raster provides the average groundwater elevations in NAVD88 for the month of October, based on the results of the U.S. Geological Survey groundwater model for Miami-Dade – Urban Miami-Dade (UMD), used to predict groundwater levels for year 2040, considering sea level rise above the baseline conditions, using NRCIII forecast, which assumes a 1.0 ft sea-level rise increase, from a year 2009 -0.9 ft mean sea-level NAVD88 to a 2040 0.1 ft.