100+ datasets found
  1. Healthcare Data

    • caliper.com
    cdf, dwg, dxf, gdb +9
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caliper Corporation (2024). Healthcare Data [Dataset]. https://www.caliper.com/mapping-software-data/maptitude-healthcare-data.htm
    Explore at:
    sql server mssql, ntf, postgis, cdf, kmz, shp, kml, geojson, dwg, sdo, dxf, gdb, postgresqlAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset authored and provided by
    Caliper Corporationhttp://www.caliper.com/
    License

    https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm

    Time period covered
    2024
    Area covered
    United States
    Description

    Healthcare Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain point geographic files of healthcare organizations, providers, and hospitals and an boundary file of Primary Care Service Areas.

  2. a

    Medical Service Study Areas

    • hub.arcgis.com
    • data.ca.gov
    • +2more
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Department of Health Care Access and Information (2024). Medical Service Study Areas [Dataset]. https://hub.arcgis.com/datasets/dce6f4b66f4e4ec888227eda905ed8fd
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    CA Department of Health Care Access and Information
    Area covered
    Description

    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).Check the Data Dictionary for field descriptions.Search for the Medical Service Study Area data on the CHHS Open Data Portal.Checkout the California Healthcare Atlas for more Medical Service Study Area information.This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.

  3. BOOK: Learning from COVID-19: GIS for Pandemics

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    • +1more
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2022). BOOK: Learning from COVID-19: GIS for Pandemics [Dataset]. https://coronavirus-resources.esri.com/documents/78dcf5a3860a4cdea5482dac94f9c6b6
    Explore at:
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Needing to answer the question of “where” sat at the forefront of everyone’s mind, and using a geographic information system (GIS) for real-time surveillance transformed possibly overwhelming data into location intelligence that provided agencies and civic leaders with valuable insights.This book highlights best practices, key GIS capabilities, and lessons learned during the COVID-19 response that can help communities prepare for the next crisis.GIS has empowered:Organizations to use human mobility data to estimate the adherence to social distancing guidelinesCommunities to monitor their health care systems’ capacity through spatially enabled surge toolsGovernments to use location-allocation methods to site new resources (i.e., testing sites and augmented care sites) in ways that account for at-risk and vulnerable populationsCommunities to use maps and spatial analysis to review case trends at local levels to support reopening of economiesOrganizations to think spatially as they consider “back-to-the-workplace” plans that account for physical distancing and employee safety needsLearning from COVID-19 also includes a “next steps” section that provides ideas, strategies, tools, and actions to help jump-start your own use of GIS, either as a citizen scientist or a health professional. A collection of online resources, including additional stories, videos, new ideas and concepts, and downloadable tools and content, complements this book.Now is the time to use science and data to make informed decisions for our future, and this book shows us how we can do it.Dr. Este GeraghtyDr. Este Geraghty is the chief medical officer and health solutions director at Esri where she leads business development for the Health and Human Services sector.Matt ArtzMatt Artz is a content strategist for Esri Press. He brings a wide breadth of experience in environmental science, technology, and marketing.

  4. GIS for Coronavirus Planning and Response Whitepaper

    • prep-response-portal.napsgfoundation.org
    • prep-response-portal-napsg.hub.arcgis.com
    Updated Apr 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). GIS for Coronavirus Planning and Response Whitepaper [Dataset]. https://prep-response-portal.napsgfoundation.org/documents/939886dd26614a2b9d72b3eef46b4f02
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Infectious disease experts have predicted a pandemic, saying it was not a question of if but when. Drawing on experiences with severe acute respiratory syndrome (SARS), avian influenza (H5N1), and novel influenza A (H1N1), the World Health Organization (WHO) and other health authorities, such as the Centers for Disease Control and Prevention (CDC), urged nations and local governments to prepare pandemic response plans. Many ministries of health and subnational departments of health around the world have activated those plans in response to coronavirus and are sharing data as required by the updated International Health Regulations.Esri's work with health organizations and government leaders has proven location intelligence from geographic information system (GIS) technology and data to be critical for the following:Assessing risk and evaluating threatsMonitoring and tracking outbreaksMaintaining situational awarenessEnsuring resource allocationNotifying agencies and communitiesThe current coronavirus disease pandemic presents an opportunity to build on the experience and readiness of Esri's existing global user community in health and human services. Through real-time maps, apps, and dashboards, GIS will also facilitate a seamless flow of relevant data as a component of the response from local to global levels. A compelling case exists for building on top of the public health GIS foundation that is already in place both in the United States and around the world.After reading this paper, leadership and senior staff should understand the following:The necessity to apply location intelligence to public health processes in coronavirus responseHow GIS can support immediate and long-term actionWhat resources Esri provides its customers

  5. PLACES: Place Data (GIS Friendly Format), 2023 release

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Place Data (GIS Friendly Format), 2023 release [Dataset]. https://catalog.data.gov/dataset/places-place-data-gis-friendly-format-2023-release
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the 2019 Census TIGER/Line place boundary file in a GIS system to produce maps for 36 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588

  6. Global Arborist Software Market Report 2025 Edition, Market Size, Share,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Sep 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2023). Global Arborist Software Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/arborist-software-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Sep 8, 2023
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    The global arborist software market was valued at USD 350.79 Million in 2022 and is projected to reach USD 881.04 Million by 2030, registering a CAGR of 12.2% for the forecast period 2023-2030. Factors Affecting Arborist Software Market Growth

    Growing awareness of tree care coupled with benefits of arborist software
    

    With increased awareness of environmental conservation and the importance of urban green spaces, there's a rising demand for professional tree care services. Growing environmental education coupled with technology adoption in tree management helps to drive the arborist software demand. Arborist software helps urban planners, municipalities, and property owners effectively manage and care for trees in cities and suburbs. Arborist software streamlines various tasks like tree inventory management, maintenance scheduling, and communication with clients. This leads to improved efficiency and productivity for arborists.

    The Restraining Factor of Arborist Software:

    Data Security, privacy concerns;
    

    Data security and privacy concerns are indeed significant factors that can impact the adoption of arborist software. Arborist software often stores information about clients' properties, contact details, and potentially even financial information. Many arborist software solutions use location data to map and manage trees. This location data could be misused if it falls into the wrong hands.

    Market Opportunity:

    Rising need to improve tree inventory practices;
    

    The rising need to improve tree inventory practices is driven by several factors, including urbanization, environmental awareness, and advancements in technology. As cities grow and expand, urban planners need accurate tree inventory data to ensure that trees are integrated into urban design. Tree inventory helps prevent conflicts between infrastructure development and tree preservation. Arborists software helps to create and maintain digital inventories of trees, including information about species, location, size, health, and maintenance history. In addition, features like Geographic Information Systems (GIS), remote sensing, and mobile data collection technologies have made it easier to create, update, and manage tree inventories.

    The COVID-19 impact on Arborist Software Market

    The COVID-19 pandemic had various impacts on industries and markets, including the arborist software market. During lockdowns and restrictions, some tree care activities might have been deprioritized due to the sudden focus on healthcare sector. However, the pandemic accelerated digital transformation across industries. Arborists who were previously reliant on manual processes might have recognized the benefits of adopting software for tasks like inventory management, reporting, and client communication. Introduction of Arborist Software

    An arborist is a professional who specializes in the cultivation, management, and study of trees, shrubs, and other woody plants. Arborists are trained in tree care practices, including planting, pruning, disease and pest management, and overall tree health maintenance. Arborist software are tools used to assist arborists in their work. These software solutions can provide various functionalities to help arborists manage and maintain trees effectively. Arborists can use software to create and maintain digital inventories of trees, including information about species, location, size, health, and maintenance history. Some common features of arborist software include tree inventory management, health assessment, risk assessment, mapping and GIS integration etc.

  7. a

    Health Care Services Map Series

    • hub.arcgis.com
    Updated Dec 18, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Westchester County GIS (2017). Health Care Services Map Series [Dataset]. https://hub.arcgis.com/maps/e76d3746cd8a46d0a7aab9328aca5063
    Explore at:
    Dataset updated
    Dec 18, 2017
    Dataset authored and provided by
    Westchester County GIS
    Area covered
    Description

    Health Care Services is part of a map series developed by Westchester County GIS for the Westchester County Department of Senior Program and Services.Map series consist of several ArcGIS online map applications to provide Westchester County seniors and their family’s access to information regarding health care, housing, food and nutrition programs, social and recreational, and transportation among others.For more information contact:Westchester County Department of Senior Program and Services.

  8. D

    Disability and Health Insurance - Seattle Neighborhoods

    • data.seattle.gov
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Disability and Health Insurance - Seattle Neighborhoods [Dataset]. https://data.seattle.gov/dataset/Disability-and-Health-Insurance-Seattle-Neighborho/nxn5-xp4j
    Explore at:
    application/rssxml, application/rdfxml, tsv, csv, xml, jsonAvailable download formats
    Dataset updated
    Oct 22, 2024
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on disabilities and health insurance related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes C21007 Age by Veteran Status by Poverty Status in the Past 12 Months by Disability Status, B27010 Types of Health Insurance Coverage by Age, B22010 Receipt of Food Stamps/SNAP by Disability Status for Households. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.


    Table created for and used in the Neighborhood Profiles application.

    Vintages: 2023
    ACS Table(s): C21007, B27010, B22010


    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb(year)a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data

  9. d

    PLACES: County Data (GIS Friendly Format), 2024 release

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: County Data (GIS Friendly Format), 2024 release [Dataset]. https://catalog.data.gov/dataset/places-county-data-gis-friendly-format-2020-release-9c9e8
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based county-level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. Project was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2022 county population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the census 2022 county boundary file in a GIS system to produce maps for 40 measures at the county level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  10. Data from: PLACES: Local Data for Better Health

    • hub.arcgis.com
    Updated Aug 31, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2020). PLACES: Local Data for Better Health [Dataset]. https://hub.arcgis.com/maps/3b7221d4e47740cab9235b839fa55cd7
    Explore at:
    Dataset updated
    Aug 31, 2020
    Dataset authored and provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    Description

    PLACES (Population Level Analysis and Community Estimates) is an expansion of the original 500 Cities project and is a collaboration between the Centers for Disease Control and Prevention (CDC), the Robert Wood Johnson Foundation, and the CDC Foundation. The original 500 Cities Project provided city- and census tract-level estimates for the 500 largest US cities. PLACES extends these estimates to all counties, places (incorporated and census designated places), census tracts, and ZIP Code Tabulation Areas (ZCTA) across the United States.This service includes 40 measures for chronic disease related health outcomes (12), prevention measures (7), health risk behaviors (4), disability (7), health status (3), and health-related social needs (7). Data were provided by CDC Division of Population Health, Epidemiology and Surveillance Branch. Data sources used to generate these measures include BRFSS data (2022 or 2021), Census Bureau 2020 census population data or annual population estimates for county vintage 2022, and American Community Survey (ACS) 2018-2022 estimates. The health outcomes include arthritis, current asthma, high blood pressure, cancer (non-skin) or melanoma, high cholesterol, chronic kidney disease, chronic obstructive pulmonary disease (COPD), coronary heart disease, diagnosed diabetes, depression, obesity, all teeth lost, and stroke. The prevention measures are lack of health insurance, routine checkup within the past year, visited dentist or dental clinic in the past year, taking medicine to control high blood pressure, cholesterol screening, mammography use for women, and colorectal cancer screening. The health risk behaviors are binge drinking, current cigarette smoking, physical inactivity, and short sleep duration.The disability measures are six disability types (hearing, vision, cognitive, mobility, self-care, and independent living) and any disability.The health status measures are frequent mental distress, frequent physical distress, and poor or fair health.The health-related social needs measures are social isolation, food stamps, food insecurity, housing insecurity, utility services threat, transportation barriers, and lack of social and emotional support.For more information, please visit https://www.cdc.gov/places or contact places@cdc.gov.

  11. a

    Community Health Centers (Feature Service)

    • hub.arcgis.com
    • gis.data.mass.gov
    • +1more
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2024). Community Health Centers (Feature Service) [Dataset]. https://hub.arcgis.com/maps/massgis::community-health-centers-2
    Explore at:
    Dataset updated
    Jan 31, 2024
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    This point datalayer shows the locations of community health centers across the Commonwealth of Massachusetts. Centers appearing in this layer are those that provide primary, dental, or eye care as listed by the Massachusetts League of Community Health Centers as of December 2024. Locations were scraped from the Massachusetts League of Community Health Centers Find a Community Health Center tool and were geocoded to MassGIS' address points and verified using current ortho imagery and individual websites where needed.More information available here...Map Service also available here...

  12. W

    Hospitals

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    • +1more
    esri rest, html
    Updated Jan 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2021). Hospitals [Dataset]. https://wifire-data.sdsc.edu/dataset/hospitals
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Jan 12, 2021
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This feature layer contains locations of Hospitals for 50 US states, Washington D.C., US territories of Puerto Rico, Guam, American Samoa, Northern Mariana Islands, Palau, and Virgin Islands. The dataset only includes hospital facilities based on data acquired from various state departments or federal sources which has been referenced in the SOURCE field. Hospital facilities which do not occur in these sources will be not present in the database. The source data was available in a variety of formats (pdfs, tables, webpages, etc.) which was cleaned and geocoded and then converted into a spatial database. The database does not contain nursing homes or health centers. Hospitals have been categorized into children, chronic disease, critical access, general acute care, long term care, military, psychiatric, rehabilitation, special, and women based on the range of the available values from the various sources after removing similarities. In this update the TRAUMA field was populated for 172 additional hospitals and helipad presence were verified for all hospitals.

  13. PLACES: County Data (GIS Friendly Format), 2021 release

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Aug 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: County Data (GIS Friendly Format), 2021 release [Dataset]. https://catalog.data.gov/dataset/places-county-data-gis-friendly-format-2021-release
    Explore at:
    Dataset updated
    Aug 26, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based county-level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. Project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2019 or 2018 county population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2015 county boundary file in a GIS system to produce maps for 29 measures at the county level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf

  14. ACS Health Insurance Coverage Variables - Centroids

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +5more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Health Insurance Coverage Variables - Centroids [Dataset]. https://coronavirus-resources.esri.com/maps/7c69956008bb4019bbbe67ed9fb05dbb
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  15. q

    Risk of zoonoses hospitalisation in Queensland Local Government Areas

    • researchdatafinder.qut.edu.au
    • researchdata.edu.au
    Updated Dec 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Javier Cortes-Ramirez (2021). Risk of zoonoses hospitalisation in Queensland Local Government Areas [Dataset]. https://researchdatafinder.qut.edu.au/individual/n22628
    Explore at:
    Dataset updated
    Dec 3, 2021
    Dataset provided by
    Queensland University of Technology (QUT)
    Authors
    Dr Javier Cortes-Ramirez
    Description

    This dataset consists of a shapefile (GIS format) of the risk and the probability of risk greater than 1.5-fold of zoonoses hospitalisation in the Queensland Local Government Areas (LGA), according to the Australian Standard Geographical Classification. The risk estimates were calculated from hospitalisation data for a group of environmentally transmitted zoonoses during the 15-year period 1996-2010, using a Bayesian spatial hierarchical model. The LGA map was produced from an analysis of the distribution of the LGA across the census years 1996, 2001 and 2006. The risk estimates in the shapefile table are the LGA relative risk of zoonoses hospitalisation and the posterior probability > 1.5 (probability of excess risk) respectively, after sociodemographic and occupational risk factors were taken into account in the regression analysis.

  16. Medical Emergency Response Structures

    • resilience.climate.gov
    • prep-response-portal.napsgfoundation.org
    • +5more
    Updated Jun 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). Medical Emergency Response Structures [Dataset]. https://resilience.climate.gov/maps/2c36dbb008844081b017da6fd3d0d28b
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Medical Emergency Response StructuresThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays hospitals, medical centers, ambulance services, fire stations and EMS stations in the U.S. Per the USGS, "Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations."Greendale Fire DepartmentData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Medical & Emergency Response) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 135 (USGS National Structures Dataset - USGS National Map Downloadable Data Collection)OGC API Features Link: (Medical Emergency Response Structures - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: The National MapFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Theme CommunityThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes."For other NGDA Content: Esri Federal Datasets

  17. ACS Health Insurance Coverage Variables - Boundaries

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gis-fema.hub.arcgis.com
    • +8more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Health Insurance Coverage Variables - Boundaries [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/a1574f4bb84f4da78b60fa0c8616eaa1
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  18. I

    Data for Spatial Accessibility to HIV (Human Immunodeficiency Virus)...

    • databank.illinois.edu
    Updated Aug 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data for Spatial Accessibility to HIV (Human Immunodeficiency Virus) Testing, Treatment, and Prevention Services in Illinois and Chicago, USA [Dataset]. https://databank.illinois.edu/datasets/IDB-9096476
    Explore at:
    Dataset updated
    Aug 9, 2022
    Authors
    Jeon-Young Kang; Bita Fayaz Farkhad; Man-pui Sally Chan; Alexander Michels; Dolores Albarracin; Shaowen Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Chicago, Illinois
    Dataset funded by
    U.S. National Science Foundation (NSF)
    U.S. National Institutes of Health (NIH)
    Description

    This dataset helps to investigate the Spatial Accessibility to HIV Testing, Treatment, and Prevention Services in Illinois and Chicago, USA. The main components are: population data, healthcare data, GTFS feeds, and road network data. The core components are: 1) GTFS which contains GTFS (General Transit Feed Specification) data which is provided by Chicago Transit Authority (CTA) from Google's GTFS feeds. Documentation defines the format and structure of the files that comprise a GTFS dataset: https://developers.google.com/transit/gtfs/reference?csw=1. 2) HealthCare contains shapefiles describing HIV healthcare providers in Chicago and Illinois respectively. The services come from Locator.HIV.gov. 3) PopData contains population data for Chicago and Illinois respectively. Data come from The American Community Survey and AIDSVu. AIDSVu (https://map.aidsvu.org/map) provides data on PLWH in Chicago at the census tract level for the year 2017 and in the State of Illinois at the county level for the year 2016. The American Community Survey (ACS) provided the number of people aged 15 to 64 at the census tract level for the year 2017 and at the county level for the year 2016. The ACS provides annually updated information on demographic and socio economic characteristics of people and housing in the U.S. 4) RoadNetwork contains the road networks for Chicago and Illinois respectively from OpenStreetMap using the Python osmnx package. The abstract for our paper is: Accomplishing the goals outlined in “Ending the HIV (Human Immunodeficiency Virus) Epidemic: A Plan for America Initiative” will require properly estimating and increasing access to HIV testing, treatment, and prevention services. In this research, a computational spatial method for estimating access was applied to measure distance to services from all points of a city or state while considering the size of the population in need for services as well as both driving and public transportation. Specifically, this study employed the enhanced two-step floating catchment area (E2SFCA) method to measure spatial accessibility to HIV testing, treatment (i.e., Ryan White HIV/AIDS program), and prevention (i.e., Pre-Exposure Prophylaxis [PrEP]) services. The method considered the spatial location of MSM (Men Who have Sex with Men), PLWH (People Living with HIV), and the general adult population 15-64 depending on what HIV services the U.S. Centers for Disease Control (CDC) recommends for each group. The study delineated service- and population-specific accessibility maps, demonstrating the method’s utility by analyzing data corresponding to the city of Chicago and the state of Illinois. Findings indicated health disparities in the south and the northwest of Chicago and particular areas in Illinois, as well as unique health disparities for public transportation compared to driving. The methodology details and computer code are shared for use in research and public policy.

  19. u

    FSDZ Multi-Sector GIS Mapping Project, Round 1 - Zambia

    • datafirst.uct.ac.za
    Updated Apr 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Financial Sector Deepening Zambia (2020). FSDZ Multi-Sector GIS Mapping Project, Round 1 - Zambia [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/624
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Financial Sector Deepening Zambia
    Time period covered
    2015
    Area covered
    Zambia
    Description

    Abstract

    This mapping project aimed to create a database of all financial, health, education, and agricultural service access points in Zambia.

    Geographic coverage

    National coverage except Ikelenge district

    Analysis unit

    Health care facilities, financial institutions, educational institutions, agricultural service providers

    Universe

    The project aimed to capture all open and operational touch-points at the time of fieldwork. Active points were considered to have done a transaction in the last 90 days. Not all points are captured due to several factors including:

    i) non-location of the points ii) security areas iii) resistance or lack of cooperation iv) dormancy v) safety of fieldwork staff

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires used in the MSMP are specific to each sector service intermediary. This means that there are 14 different questionnaires, each with its own set of specific questions.

  20. a

    Data from: Rural Health Clinics

    • disasters.amerigeoss.org
    • disaster-amerigeoss.opendata.arcgis.com
    • +1more
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Jefferson (2020). Rural Health Clinics [Dataset]. https://disasters.amerigeoss.org/maps/jeffcitymogis::rural-health-clinics/about
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset authored and provided by
    City of Jefferson
    Area covered
    Description

    This dataset was developed by the Missouri Department of Health and Senior Services. Rural Clinics are outpatient facilities that provide services to medically underserved populations. Rural clinics must be located in an area defined by the US Bureau of the Census as non-urbanized. An urbanized area is defined as "a densely settled territory that contains 50,000 or more people" by the Bureau. March 2020 Update.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Caliper Corporation (2024). Healthcare Data [Dataset]. https://www.caliper.com/mapping-software-data/maptitude-healthcare-data.htm
Organization logo

Healthcare Data

Explore at:
sql server mssql, ntf, postgis, cdf, kmz, shp, kml, geojson, dwg, sdo, dxf, gdb, postgresqlAvailable download formats
Dataset updated
Jul 25, 2024
Dataset authored and provided by
Caliper Corporationhttp://www.caliper.com/
License

https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm

Time period covered
2024
Area covered
United States
Description

Healthcare Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain point geographic files of healthcare organizations, providers, and hospitals and an boundary file of Primary Care Service Areas.

Search
Clear search
Close search
Google apps
Main menu