100+ datasets found
  1. GIS Mapping Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Mapping Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/gis-mapping-software-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Mapping Software Market Outlook



    The global GIS Mapping Software market size was valued at approximately USD 8.5 billion in 2023 and is projected to reach around USD 17.5 billion by 2032, growing at a CAGR of 8.3% from 2024 to 2032. This robust growth is driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, disaster management, and agriculture.



    One of the primary growth factors for the GIS Mapping Software market is the rising need for spatial data analytics. Organizations are increasingly recognizing the value of geographical data in making informed decisions, driving the demand for sophisticated mapping solutions. Furthermore, advancements in satellite imaging technology and the increasing availability of high-resolution imagery are enhancing the capabilities of GIS software, making it a crucial tool for various applications.



    Another significant driver is the integration of GIS with emerging technologies such as artificial intelligence (AI) and the Internet of Things (IoT). These integrations are facilitating real-time data processing and analysis, thereby improving the efficiency and accuracy of GIS applications. For instance, in urban planning and disaster management, real-time data can significantly enhance predictive modeling and response strategies. This synergy between GIS and cutting-edge technologies is expected to fuel market growth further.



    The growing emphasis on sustainable development and smart city initiatives globally is also contributing to the market's expansion. Governments and private entities are investing heavily in GIS technologies to optimize resource management, enhance public services, and improve urban infrastructure. These investments are particularly evident in developing regions where urbanization rates are high, and there is a pressing need for efficient spatial planning and management.



    In terms of regional outlook, North America holds a significant share of the GIS Mapping Software market, driven by robust technological infrastructure and high adoption rates across various industries. However, Asia Pacific is expected to witness the highest growth rate during the forecast period. This growth is attributed to rapid urbanization, increasing government initiatives for smart cities, and rising investments in infrastructure development.



    The Geographic Information Systems Platform has become an integral part of modern spatial data management, offering a comprehensive framework for collecting, analyzing, and visualizing geographic data. This platform facilitates the integration of diverse data sources, enabling users to create detailed maps and spatial models that support decision-making across various sectors. With the increasing complexity of urban environments and the need for efficient resource management, the Geographic Information Systems Platform provides the tools necessary for real-time data processing and analysis. Its versatility and scalability make it an essential component for organizations looking to leverage geospatial data for strategic planning and operational efficiency.



    Component Analysis



    The GIS Mapping Software market is segmented by component into software and services. The software segment dominates the market, primarily due to the continuous advancements in GIS software capabilities. Modern GIS software offers a range of functionalities, from basic mapping to complex spatial analysis, making it indispensable for various sectors. These software solutions are increasingly user-friendly, allowing even non-experts to leverage geospatial data effectively.



    Moreover, the software segment is witnessing significant innovation with the integration of AI and machine learning algorithms. These advancements are enabling more sophisticated data analysis and predictive modeling, which are crucial for applications such as disaster management and urban planning. The adoption of cloud-based GIS software is also on the rise, offering scalability and real-time data processing capabilities, which are essential for dynamic applications like transport management.



    The services segment, although smaller than the software segment, is also experiencing growth. This includes consulting, implementation, and maintenance services that are critical for the successful deployment and operation of GIS systems. The increasing complexity of GIS applications nec

  2. Nielsen PrimeLocation Web/Desktop: Assessing and GIS Mapping Market Area

    • catalog.data.gov
    • data.wu.ac.at
    Updated Mar 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2025). Nielsen PrimeLocation Web/Desktop: Assessing and GIS Mapping Market Area [Dataset]. https://catalog.data.gov/dataset/nielsen-primelocation-web-desktop-assessing-and-gis-mapping-market-area
    Explore at:
    Dataset updated
    Mar 8, 2025
    Dataset provided by
    Social Security Administrationhttp://ssa.gov/
    Description

    Nielsen PrimeLocation Web and Desktop Software Licensed for Internal Use only: Pop-Facts Demographics Database, Geographic Mapping Data Layers, Geo-Coding locations.

  3. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon, United States
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  4. d

    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  5. G

    GIS Mapping Tools Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). GIS Mapping Tools Report [Dataset]. https://www.archivemarketresearch.com/reports/gis-mapping-tools-21741
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The market for GIS Mapping Tools is projected to reach a value of $XX million by 2033, growing at a CAGR of XX% during the forecast period (2025-2033). The market growth is attributed to the increasing adoption of GIS mapping tools by various industries, including government, utilities, and telecom, for a wide range of applications such as geological exploration, water conservancy projects, and urban planning. The convergence of GIS with other technologies such as artificial intelligence (AI) and the Internet of Things (IoT) is further driving market growth, as these technologies enable GIS mapping tools to provide more accurate and real-time data analysis. The market is segmented by type (cloud-based, web-based), application (geological exploration, water conservancy projects, urban planning, others), and region (North America, Europe, Asia Pacific, Middle East & Africa). North America is expected to remain the largest market for GIS mapping tools throughout the forecast period, due to the early adoption of these technologies and the presence of leading vendors such as Esri, MapInfo, and Autodesk. Asia Pacific is expected to experience the highest growth rate during the forecast period, due to the increasing adoption of GIS mapping tools in emerging economies such as China and India. Key industry players include Golden Software Surfer, Geoway, QGIS, GRASS GIS, Google Earth Pro, CARTO, Maptive, Shenzhen Edraw Software, MapGIS, Oasis montaj, DIVA-GIS, Esri, MapInfo, Autodesk, BatchGeo, Cadcorp, Hexagon, Mapbox, Trimble, and ArcGIS.

  6. Sample of Mandan, North Dakota Aerial Image Dataset

    • agdatacommons.nal.usda.gov
    zip
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Agricultural Research Service (2023). Sample of Mandan, North Dakota Aerial Image Dataset [Dataset]. http://doi.org/10.15482/USDA.ADC/1209664
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Authors
    USDA Agricultural Research Service
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Mandan, North Dakota
    Description

    Originally produced by the Farm Security Administration, these are georeferenced aerial images from Morton County, North Dakota. Historic print images housed at the Mandan, North Dakota ARS Long-Term Agricultural Research facility were digitized, georeferenced, and processed for use in both professional and consumer level GIS applications, or in photo-editing applications. The original images were produced by the Farm Security Administration to monitor government compliance for farm land agreements. Current applications include assessing land use change over time with regard to erosion, land cover, and natural and man-made structures. Not for use in high precision applications. Resources in this dataset:Resource Title: 1938_AZY_3_89. File Name: 1938_AZY_3_89_0.zipResource Description: Contains IIQ, JPG, OVR, XML, AUX, and TIF files processed in ArcMap / ArcGIS that can be used in ArcGIS applications, or in other photo or geospatial applications. Resource Title: 1938 Mosaic Index. File Name: 1938_mosaic_index_1.zipResource Description: This is the index key for the 1938 Mandan aerial images from Morton County, ND. To find the geographic location for each uploaded 1938 image, consult this map. File titles are arranged as follows: Year_Area_Roll_Frame. The mosaic map displays Roll_Frame coordinates to correspond to these images. Contains TIF, OVR, JPG, AUX, IIQ, and XML files. Resource Title: 1938_AZY_5_113. File Name: 1938_AZY_5_113_2.zipResource Description: Contains IIQ, JPG, OVR, XML, AUX, and TIF files processed in ArcMap / ArcGIS.

  7. Digital Geomorphic-GIS Map of Cat Island (5-meter accuracy 2007 mapping),...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Cat Island (5-meter accuracy 2007 mapping), Mississippi (NPS, GRD, GRI, GUIS, CATI_geomorphology digital map) adapted from a U.S. Geological Survey Open File Report map by Morton and Rogers (2009) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-cat-island-5-meter-accuracy-2007-mapping-mississippi-nps-grd
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Mississippi
    Description

    The Digital Geomorphic-GIS Map of Cat Island (5-meter accuracy 2007 mapping), Mississippi is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (cati_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (cati_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (cati_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cati_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cati_geomorphology_metadata.txt or cati_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:11,500 and United States National Map Accuracy Standards features are within (horizontally) 9.7 meters or 31.9 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. Digital Geomorphic-GIS Map of the Avon Area (1:24,000 scale 2007 mapping),...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of the Avon Area (1:24,000 scale 2007 mapping), North Carolina (NPS, GRD, GRI, CAHA, AVON_geomorphology digital map) adapted from a North Carolina Geological Survey digital publication map by Hoffman and Shroyer (2007) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-the-avon-area-1-24000-scale-2007-mapping-north-carolina-nps-
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphic-GIS Map of the Avon Area (1:24,000 scale 2007 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (avon_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (avon_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (avon_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (avon_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (avon_geomorphology_metadata.txt or avon_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. C

    DOMI Street Closures For GIS Mapping

    • data.wprdc.org
    csv, html
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Pittsburgh (2025). DOMI Street Closures For GIS Mapping [Dataset]. https://data.wprdc.org/dataset/street-closures
    Explore at:
    csv, htmlAvailable download formats
    Dataset updated
    Jul 14, 2025
    Dataset provided by
    City of Pittsburgh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    This dataset contains all DOMI Street Closure Permit data in the Computronix (CX) system from the date of its adoption (in May 2020) until the present. The data in each record can be used to determine when street closures are occurring, who is requesting these closures, why the closure is being requested, and for mapping the closures themselves. It is updated hourly (as of March 2024).

    Preprocessing/Formatting

    It is important to distinguish between a permit, a permit's street closure(s), and the roadway segments that are referenced to that closure(s).

    • The CX system identifies a street in segments of roadway. (As an example, the CX system could divide Maple Street into multiple segments.)

    • A single street closure may span multiple segments of a street.

    • The street closure permit refers to all the component line segments.

    • A permit may have multiple streets which are closed. Street closure permits often reference many segments of roadway.

    The roadway_id field is a unique GIS line segment representing the aforementioned segments of road. The roadway_id values are assigned internally by the CX system and are unlikely to be known by the permit applicant. A section of roadway may have multiple permits issued over its lifespan. Therefore, a given roadway_id value may appear in multiple permits.

    The field closure_id represents a unique ID for each closure, and permit_id uniquely identifies each permit. This is in contrast to the aforementioned roadway_id field which, again, is a unique ID only for the roadway segments.

    City teams that use this data requested that each segment of each street closure permit be represented as a unique row in the dataset. Thus, a street closure permit that refers to three segments of roadway would be represented as three rows in the table. Aside from the roadway_id field, most other data from that permit pertains equally to those three rows. Thus, the values in most fields of the three records are identical.

    Each row has the fields segment_num and total_segments which detail the relationship of each record, and its corresponding permit, according to street segment. The above example produced three records for a single permit. In this case, total_segments would equal 3 for each record. Each of those records would have a unique value between 1 and 3.

    The geometry field consists of string values of lat/long coordinates, which can be used to map the street segments.

    All string text (most fields) were converted to UPPERCASE data. Most of the data are manually entered and often contain non-uniform formatting. While several solutions for cleaning the data exist, text were transformed to UPPERCASE to provide some degree of regularization. Beyond that, it is recommended that the user carefully think through cleaning any unstructured data, as there are many nuances to consider. Future improvements to this ETL pipeline may approach this problem with a more sophisticated technique.

    Known Uses

    These data are used by DOMI to track the status of street closures (and associated permits).

    Further Documentation and Resources

    An archived dataset containing historical street closure records (from before May of 2020) for the City of Pittsburgh may be found here: https://data.wprdc.org/dataset/right-of-way-permits

  10. d

    GIS Data Italy | Mapping Data | 4.5M+ Places in Italy

    • datarade.ai
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). GIS Data Italy | Mapping Data | 4.5M+ Places in Italy [Dataset]. https://datarade.ai/data-products/gis-data-italy-mapping-data-4-5m-places-in-italy-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    Italy
    Description

    Unlock precise, high-quality GIS data covering 4.5M+ verified locations across Italy. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.

    Key use cases of GIS Data helping our customers :

    1. Optimize Mapping & Spatial Analysis : Use GIS data to analyse landscapes, urban infrastructure, and competitor locations, ensuring data-driven planning and decision-making.
    2. Enhance Navigation & Location-Based Services : Improve real-time route planning, asset tracking, and EV charging station discovery for seamless location-based experiences.
    3. Identify Strategic Sites for Business Expansion : Leverage GIS intelligence to select optimal retail sites, franchise locations, and warehouses with precision.
    4. Improve Logistics & Address Accuracy : Streamline delivery networks, validate addresses, and optimize courier routes to boost efficiency and customer satisfaction.
    5. Support Environmental & Urban Development Initiatives : Utilize GIS insights for disaster preparedness, sustainable city planning, and land-use management.
  11. a

    Cuyahoga County GIS Web Mapping

    • gis-cuyahoga.hub.arcgis.com
    Updated Mar 30, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cuyahoga County (2017). Cuyahoga County GIS Web Mapping [Dataset]. https://gis-cuyahoga.hub.arcgis.com/datasets/cuyahoga-county-gis-web-mapping
    Explore at:
    Dataset updated
    Mar 30, 2017
    Dataset authored and provided by
    Cuyahoga County
    Description

    Web-based GIS mapping application.Contains all available GIS and mapping resources for Cuyahoga County.Use the application to explore data using the available search, identify, and query tools; markup the map with the drawing tools; export the map to a geo-referenced image file; print the map to PDF with a custom title and include a legend and scale.View the 'Help Guide' for FAQs, tool tips, and additional information about the application and the data.

  12. A

    Pattern-based GIS for understanding content of very large Earth Science...

    • data.amerigeoss.org
    • data.wu.ac.at
    html
    Updated Jan 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). Pattern-based GIS for understanding content of very large Earth Science datasets [Dataset]. https://data.amerigeoss.org/dataset/pattern-based-gis-for-understanding-content-of-very-large-earth-science-datasets1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 29, 2020
    Dataset provided by
    United States
    Area covered
    Earth
    Description

    The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.

    GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.

    The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.

  13. C

    GIS Mapping files

    • data.birminghamal.gov
    geojson, html, shp
    Updated Jan 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Birmingham Planning & Engineering (2019). GIS Mapping files [Dataset]. https://data.birminghamal.gov/dataset/gis-mapping-files
    Explore at:
    html, shp, geojson, geojson(1853069), geojson(1539369), shp(444998), shp(377381)Available download formats
    Dataset updated
    Jan 9, 2019
    Dataset authored and provided by
    Birmingham Planning & Engineering
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Planning, Engineering & Permitting - GIS Mapping files

  14. d

    Datasets for Computational Methods and GIS Applications in Social Science

    • search.dataone.org
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2024). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  15. d

    GIS Data North America | Mapping Data | 46M+ Places in North America

    • datarade.ai
    Updated Mar 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). GIS Data North America | Mapping Data | 46M+ Places in North America [Dataset]. https://datarade.ai/data-products/gis-data-north-america-mapping-data-46m-places-in-north-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    United States, Canada
    Description

    Unlock precise, high-quality GIS data covering 46M+ verified locations across North America. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.

    Key use cases of GIS Data helping our customers :

    1. Optimize Mapping & Spatial Analysis : Use GIS data to analyse landscapes, urban infrastructure, and competitor locations, ensuring data-driven planning and decision-making.
    2. Enhance Navigation & Location-Based Services : Improve real-time route planning, asset tracking, and EV charging station discovery for seamless location-based experiences.
    3. Identify Strategic Sites for Business Expansion : Leverage GIS intelligence to select optimal retail sites, franchise locations, and warehouses with precision.
    4. Improve Logistics & Address Accuracy : Streamline delivery networks, validate addresses, and optimize courier routes to boost efficiency and customer satisfaction.
    5. Support Environmental & Urban Development Initiatives : Utilize GIS insights for disaster preparedness, sustainable city planning, and land-use management.
  16. m

    Comprehensive GIS Mapping Software Market Size, Share & Industry Insights...

    • marketresearchintellect.com
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Intellect (2025). Comprehensive GIS Mapping Software Market Size, Share & Industry Insights 2033 [Dataset]. https://www.marketresearchintellect.com/product/gis-mapping-software-market/
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset authored and provided by
    Market Research Intellect
    License

    https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy

    Area covered
    Global
    Description

    Learn more about Market Research Intellect's GIS Mapping Software Market Report, valued at USD 3.2 billion in 2024, and set to grow to USD 6.5 billion by 2033 with a CAGR of 8.5% (2026-2033).

  17. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-21401
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 22, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS data collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising demand for accurate geospatial data across various industries. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $4.2 billion by 2033. Key drivers include the increasing availability of affordable and high-precision GPS technology, coupled with advancements in data processing and cloud-based solutions. The integration of GIS data collectors with other technologies, such as drones and IoT sensors, is further fueling market expansion. The demand for high-precision GIS data collectors is particularly strong in sectors like surveying, mapping, and construction, where accuracy is paramount. While the market faces challenges such as high initial investment costs and the need for specialized expertise, the overall growth trajectory remains positive. The market is segmented by application (agriculture, industrial, forestry, and others) and by type (general precision and high precision). North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to experience rapid growth in the coming years due to substantial infrastructure development and increasing government investments in geospatial technologies. The competitive landscape is characterized by both established players like Trimble, Garmin, and Hexagon (Leica Geosystems) and emerging companies offering innovative solutions. These companies are constantly innovating, integrating advanced technologies like AI and machine learning to enhance data collection and analysis capabilities. This competition is driving down prices and improving product quality, benefiting end-users. The increasing use of mobile GIS and cloud-based data management solutions is also transforming the industry, making data collection and analysis more accessible and efficient. Future growth will be largely influenced by the advancement of 5G networks, enabling faster data transmission and real-time applications, and the increasing adoption of automation and AI in data processing workflows. Furthermore, government regulations promoting the use of accurate geospatial data for sustainable development and environmental monitoring are creating new opportunities for the market’s expansion.

  18. Digital Geohazards-GIS Map of Biscayne National Park and Vicinity (2005...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geohazards-GIS Map of Biscayne National Park and Vicinity (2005 Mapping), Florida (NPS, GRD, GRI, BISC, BISC_geohazard digital map) adapted from a Florida Geological Survey Bulletin map by Arthur, Baker, Cichon, Wood and Rudin (2005) [Dataset]. https://catalog.data.gov/dataset/digital-geohazards-gis-map-of-biscayne-national-park-and-vicinity-2005-mapping-florida-nps
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Florida
    Description

    The Digital Geohazards-GIS Map of Biscayne National Park and Vicinity (2005 Mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (bisc_geohazard.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (bisc_geohazard.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (bisc_geohazard.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (bisc_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bisc_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bisc_geohazard_metadata_faq.pdf). Please read the bisc_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bisc_geohazard_metadata.txt or bisc_geohazard_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. G

    GIS Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-industry-14668
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) industry is experiencing robust growth, projected to maintain a Compound Annual Growth Rate (CAGR) of 10.80% from 2025 to 2033. This expansion is driven by increasing adoption across diverse sectors, including agriculture, utilities, mining, construction, transportation, and oil and gas. The rising need for precise location-based data for efficient operations, optimized resource management, and informed decision-making fuels this market growth. Advancements in hardware, such as high-resolution sensors and drones, coupled with sophisticated software capabilities like advanced spatial analytics and cloud-based GIS solutions, are key contributors. Furthermore, the proliferation of location-based services (LBS) and the growing adoption of telematics and navigation systems are expanding the applications of GIS technology. While data security concerns and the need for skilled professionals present some challenges, the overall market outlook remains positive. The segmentation of the GIS market reveals a strong demand across various components (hardware and software) and functionalities (mapping, surveying, telematics and navigation, and location-based services). North America currently holds a significant market share due to early adoption and technological advancements, but regions like Asia are exhibiting rapid growth fueled by infrastructure development and increasing digitalization. Leading companies like Bentley Systems, Esri, Trimble, and Hexagon AB are at the forefront of innovation, continuously developing and implementing advanced GIS solutions to meet the evolving needs of different industries. The forecast for the next decade points to further market consolidation, with leading players investing heavily in research and development to enhance their product offerings and expand their market reach. The continued integration of GIS with other technologies such as AI and IoT will further drive market expansion and create new opportunities for growth. Comprehensive Coverage GIS Industry Report (2019-2033) This in-depth report provides a comprehensive analysis of the Geographic Information System (GIS) industry, projecting robust growth from $XXX million in 2025 to $YYY million by 2033. The study covers the historical period (2019-2024), base year (2025), and forecast period (2025-2033), offering invaluable insights for businesses, investors, and policymakers. Keywords: GIS market, GIS software, GIS hardware, GIS solutions, geospatial technology, location intelligence, mapping software, surveying equipment, spatial analysis, geospatial analytics. Recent developments include: November 2022 : The new Geodata Portal and broadband maps for the state will be accessible starting on November 18, 2022, according to a statement from the Connecticut Office of Policy and Management (OPM). This announcement was made on GIS Day 2022, which encourages people to learn about geography and the practical uses of GIS that can improve society., November 2022 : The lt. governor of the Indian state, Jammu and Kashmir, launched a GIS-based system in the region. It highlights the significance of GIS technology in addressing new challenges and exploring new opportunities and its real-world applications, accelerating growth in business, government, and society.. Key drivers for this market are: Growing role of GIS in smart cities ecosystem, Integration of location-based mapping systems with business intelligence systems. Potential restraints include: Integration issues with traditional systems, Data quality and accuracy issues. Notable trends are: The Rising Smart Cities Development and Urban Planning to Drive the Market Growth.

  20. S

    Two residential districts datasets from Kielce, Poland for building semantic...

    • scidb.cn
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agnieszka Łysak (2022). Two residential districts datasets from Kielce, Poland for building semantic segmentation task [Dataset]. http://doi.org/10.57760/sciencedb.02955
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Agnieszka Łysak
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Kielce, Poland
    Description

    Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). GIS Mapping Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/gis-mapping-software-market
Organization logo

GIS Mapping Software Market Report | Global Forecast From 2025 To 2033

Explore at:
pdf, pptx, csvAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

GIS Mapping Software Market Outlook



The global GIS Mapping Software market size was valued at approximately USD 8.5 billion in 2023 and is projected to reach around USD 17.5 billion by 2032, growing at a CAGR of 8.3% from 2024 to 2032. This robust growth is driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, disaster management, and agriculture.



One of the primary growth factors for the GIS Mapping Software market is the rising need for spatial data analytics. Organizations are increasingly recognizing the value of geographical data in making informed decisions, driving the demand for sophisticated mapping solutions. Furthermore, advancements in satellite imaging technology and the increasing availability of high-resolution imagery are enhancing the capabilities of GIS software, making it a crucial tool for various applications.



Another significant driver is the integration of GIS with emerging technologies such as artificial intelligence (AI) and the Internet of Things (IoT). These integrations are facilitating real-time data processing and analysis, thereby improving the efficiency and accuracy of GIS applications. For instance, in urban planning and disaster management, real-time data can significantly enhance predictive modeling and response strategies. This synergy between GIS and cutting-edge technologies is expected to fuel market growth further.



The growing emphasis on sustainable development and smart city initiatives globally is also contributing to the market's expansion. Governments and private entities are investing heavily in GIS technologies to optimize resource management, enhance public services, and improve urban infrastructure. These investments are particularly evident in developing regions where urbanization rates are high, and there is a pressing need for efficient spatial planning and management.



In terms of regional outlook, North America holds a significant share of the GIS Mapping Software market, driven by robust technological infrastructure and high adoption rates across various industries. However, Asia Pacific is expected to witness the highest growth rate during the forecast period. This growth is attributed to rapid urbanization, increasing government initiatives for smart cities, and rising investments in infrastructure development.



The Geographic Information Systems Platform has become an integral part of modern spatial data management, offering a comprehensive framework for collecting, analyzing, and visualizing geographic data. This platform facilitates the integration of diverse data sources, enabling users to create detailed maps and spatial models that support decision-making across various sectors. With the increasing complexity of urban environments and the need for efficient resource management, the Geographic Information Systems Platform provides the tools necessary for real-time data processing and analysis. Its versatility and scalability make it an essential component for organizations looking to leverage geospatial data for strategic planning and operational efficiency.



Component Analysis



The GIS Mapping Software market is segmented by component into software and services. The software segment dominates the market, primarily due to the continuous advancements in GIS software capabilities. Modern GIS software offers a range of functionalities, from basic mapping to complex spatial analysis, making it indispensable for various sectors. These software solutions are increasingly user-friendly, allowing even non-experts to leverage geospatial data effectively.



Moreover, the software segment is witnessing significant innovation with the integration of AI and machine learning algorithms. These advancements are enabling more sophisticated data analysis and predictive modeling, which are crucial for applications such as disaster management and urban planning. The adoption of cloud-based GIS software is also on the rise, offering scalability and real-time data processing capabilities, which are essential for dynamic applications like transport management.



The services segment, although smaller than the software segment, is also experiencing growth. This includes consulting, implementation, and maintenance services that are critical for the successful deployment and operation of GIS systems. The increasing complexity of GIS applications nec

Search
Clear search
Close search
Google apps
Main menu