Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open-Source GIS plays a pivotal role in advancing GIS education, fostering research collaboration, and supporting global sustainability by enabling the sharing of data, models, and knowledge. However, the integration of big data, deep learning methods, and artificial intelligence deep learning in geospatial research presents significant challenges for GIS education. These include increasing software learning costs, higher computational power demand, and the management of fragmented information in the Web 2.0 context. Addressing these challenges while integrating emerging GIS innovations and restructuring GIS knowledge systems is crucial for the evolution of GIS Education 3.0. This study introduces a Visual Programming-based Geospatial Cyberinfrastructure (V-GCI) framework, integrated with the replicable and reproducible (R&R) framework, to enhance GIS function compatibility, learning scalability, and web GIS application interoperability. Through a case study on spatial accessibility using the generalized two-step floating catchment area method (G2SFCA), this paper demonstrates how V-GCI can reshape the GIS knowledge tree and its potential to enhance replicability and reproducibility within open-source GIS Education 3.0.
Facebook
TwitterExplore the content in this pathway to see the role of GIS in agriculture education. Understand the opportunities that GIS opens for students in the career cluster for agriculture, food, and natural resources.
Facebook
TwitterProperties with elementary and secondary education facilities in the City of Champaign. Higher education facilities such as the University of Illinois and Parkland College are not included.
Facebook
TwitterThis is the new quarterly ArcGIS newsletter for Higher Education. It will contain all the important information for teaching and facilitating the use of ArcGIS across your university. We aim to publish newsletters in October, January, April and July. Lets get into it.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundAchieving educational equity requires understanding how physical education (PE) teachers are spatially distributed.MethodsGuided by a sports-geography lens on spatial allocation (center–periphery dynamics; clustering/dispersion), we operationalized the framework into a composite PE-teacher allocation index covering quantity, structure, quality, and professionalization. Indicator selection and interpretation follow the spatial framework, whereas data-driven weights are obtained via the entropy method, which uses between-school variation to avoid subjective expert weighting. We analyzed 1,504 schools in Xi’an (2024), cross-validating official statistics for accuracy and completeness. Spatial visualization (GIS) used Jenks natural breaks (k = 5) to reveal heterogeneity; ordinary Kriging interpolation depicted continuous gradients; and Global/Local Moran’s I (with permutation tests) quantified spatial autocorrelation patterns.ResultsXi’an exhibits a pronounced center-strong/periphery-weak pattern. High–high clusters of well-resourced schools concentrate in the urban core, whereas low–low clusters in remote districts indicate pockets of persistent under-resourcing. The Global Moran’s I for the composite index is 0.268 (Z = 5.079, p
Facebook
TwitterEsri UK is providing a digital mapping platform and expertise in biodiversity mapping for the National Education Nature Park. We are providing the Department of Education with ArcGIS Online - an extensible web-based mapping platform to provide staff and students with geospatial tools that will allow them to view, capture, store, analyse and monitor environmental and biodiversity data. We are also providing Professional Services to be delivered using an agile methodology, along with training to key stakeholders.To deploy geospatial tools to all schools, we are using the existing ArcGIS for Schools program.
Facebook
TwitterDC public schools. This dataset contains points representing public schools. It was created for the D.C. public schools and later added to the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO). This dataset includes all identifiable DCPS public elementary, middle, education campus's, senior high, and special education schools as well as learning centers. Does not include private or charter schools. School locations were identified from a database from the DC Public Schools, Office of Facilities Management. Current for the 2017-18 school year.
Facebook
TwitterHi, I'm Kiaran Ratcliffe a GIS Consultant within the Education Team at Esri UK. Esri is a company that creates and distributes GIS software, and my focus is on helping schools and universities access and use this software effectively. That means helping educators bring GIS into the classroom in ways that are engaging, inclusive, and relevant. We want students to leave school or university not just knowing how to use GIS, but understanding how to apply it to make a difference—socially, environmentally, and across all kinds of industries.It’s a really rewarding role. We get to support both students and teachers, and help them use modern spatial tools to explore the world, solve problems, and tell powerful stories with data.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/terms
This Innovative Technology Experiences for Students and Teachers (ITEST) project has developed, implemented, and evaluated a series of innovative Socio-Environmental Science Investigations (SESI) using a geospatial curriculum approach. It is targeted for economically disadvantaged 9th grade high school students in Allentown, PA, and involves hands-on geospatial technology to help develop STEM-related skills. SESI focuses on societal issues related to environmental science. These issues are multi-disciplinary, involve decision-making that is based on the analysis of merged scientific and sociological data, and have direct implications for the social agency and equity milieu faced by these and other school students. This project employed a design partnership between Lehigh University natural science, social science, and education professors, high school science and social studies teachers, and STEM professionals in the local community to develop geospatial investigations with Web-based Geographic Information Systems (GIS). These were designed to provide students with geospatial skills, career awareness, and motivation to pursue appropriate education pathways for STEM-related occupations, in addition to building a more geographically and scientifically literate citizenry. The learning activities provide opportunities for students to collaborate, seek evidence, problem-solve, master technology, develop geospatial thinking and reasoning skills, and practice communication skills that are essential for the STEM workplace and beyond. Despite the accelerating growth in geospatial industries and congruence across STEM, few school-based programs integrate geospatial technology within their curricula, and even fewer are designed to promote interest and aspiration in the STEM-related occupations that will maintain American prominence in science and technology. The SESI project is based on a transformative curriculum approach for geospatial learning using Web GIS to develop STEM-related skills and promote STEM-related career interest in students who are traditionally underrepresented in STEM-related fields. This project attends to a significant challenge in STEM education: the recognized deficiency in quality locally-based and relevant high school curriculum for under-represented students that focuses on local social issues related to the environment. Environmental issues have great societal relevance, and because many environmental problems have a disproportionate impact on underrepresented and disadvantaged groups, they provide a compelling subject of study for students from these groups in developing STEM-related skills. Once piloted in the relatively challenging environment of an urban school with many unengaged learners, the results will be readily transferable to any school district to enhance geospatial reasoning skills nationally.
Facebook
TwitterThese geocoded locations are based on the Allegheny County extract of Educational Names & Addresses (EdNA) via Pennsylvania Department of Education website as of April 19, 2018. Several addresses were not able to be geocoded (ex. If PO Box addresses were provided, they were not geocoded.)If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below. Category: Education Organization: Allegheny County Department: Department of Human Services Temporal Coverage: as of April 19, 2018 Data Notes: Coordinate System: GCS_North_American_1983 Development Notes: none Other: none Related Document(s): Data Dictionary - none Frequency - Data Change: April, 19, 2018 data Frequency - Publishing: one-time Data Steward Name: See http://www.edna.ed.state.pa.us/Screens/Extracts/wfExtractEntitiesAdmin.aspx for more information. Data Steward Email: RA-DDQDataCollection@pa.gov (Data Collection Team)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Instructions for students to use aerial photos, Google Earth and QGIS to explore their fieldwork area prior to their field trip. This material was designed for first-year undergraduate Earth Sciences students, in preparation to a fieldwork in the French Alps. The fieldwork and this guide focuses on understanding the geology and geomorphology.The accompanying dataset.zip contains required gis-data, which are a DEM (SRTM) and Satellite images (Landsat). This dataset is without a topographic map (SCAN25 from IGN) due to licence constraint. For academic use, request your own licence from IGN (ign.fr) directly.
Facebook
TwitterColleges and Universities This feature layer, utilizing data from the National Center for Education Statistics (NCES), displays colleges and universities in the U.S. and its territories. NCES uses the Integrated Postsecondary Education Data System (IPEDS) as the "primary source for information on U.S. colleges, universities, and technical and vocational institutions." According to NCES, this layer "contains directory information for every institution in the 2023-24 IPEDS universe. Includes name, address, city, state, zip code and various URL links to the institution"s home page, admissions, financial aid offices and the net price calculator. Identifies institutions as currently active, and institutions that participate in Title IV federal financial aid programs for which IPEDS is mandatory." University of the District of ColumbiaData currency: 2023Data source: IPEDS Complete Data FilesData modification: Removed fields with coded values and replaced with descriptionsFor more information: Integrated Postsecondary Education Data SystemSupport documentation: Data DictionaryFor feedback, please contact: ArcGIScomNationalMaps@esri.com U.S. Department of Education (ED) Per ED, The mission of the Department of Education (ED) is to promote student achievement and preparation for global competitiveness by fostering educational excellence and ensuring equal access for students of all ages.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
EdNA (Education Names and Addresses) can be used to find name, address, administrator, and related information about the educational entities that PDE serves. These entities include school districts and their schools, intermediate units, career and technical centers, charter schools, nonpublic and private schools, higher education institutions, and many more. State Public Libraries are also part of this file and most of them start with a 9 as the first digit of the AUN column. There is one entry for Free Library of Philadelphia AUN 300513650 that does not start with a 9.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Do you need help in learning how to include GIS into your classroom activities? IowaView has developed a helpful guide for K-12 educators to learn what tools are available and how to integrate them into the classroom. Some of the geography content in this guide is specific to Iowa but the tools and resources are useful for anyone involved in K-12 education.
Facebook
TwitterCommunity GIS - Education & EnterpriseUploaded as hosted feature layer on 19.10.2018 for use in My Doorstep for creating larger icons at larger scales. This is to optimise touch screen user experience. .hidden { display: none }
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Table contains count and percent of county residents ages 25 years and older with less than bachelors' education attainment. The measure is summarized at county, city, zip code and census tract. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B15002; data accessed on May 17, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (Numeric): Geography IDNAME (String): Name of geographypop (Numeric): Population ages 25 and olderpct_lt_bach (Numeric): Number of people ages 25 and older with less than bachelors' educationlt_bachelor (Numeric): Percent of people ages 25 and older with less than bachelors' education
Facebook
TwitterPrior experience of GIS is variable, but a number of PGCE students and in-service teachers reported negative prior experiences with geospatial technology. Common complaints include a course focussed on data students found irrelevant, with learning exercises in the form of list-like instructions. The complexity of desktop GIS software is also often mentioned as off-putting.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This point datalayer shows the locations of schools in Massachusetts. Schools appearing in this layer are those attended by students in pre-kindergarten through high school. Categories of schools include public, private, charter, collaborative programs, and approved special education. This data was originally developed by the Massachusetts Department of Environmental Protection’s (DEP) GIS Program based on database information provided by the Massachusetts Department of Education (DOE). The update published on April 17th, 2009 was based on listings MassGIS obtained from the DOE as of February 9th, 2009. The layer is stored in ArcSDE and distributed as SCHOOLS_PT. Only schools located in Massachusetts are included in this layer. The DOE also provides a listing of out-of-state schools open to Massachusetts' residents, particularly for those with special learning requirements. Please see http://profiles.doe.mass.edu/outofstate.asp for details. Updated September 2018.
Facebook
TwitterThis dataset attempts to represent the point locations of every educational program in the state of Minnesota that is currently operational and reporting to the Minnesota Department of Education. It can be used to identify schools, various individual school programs, school districts (by office location), colleges, and libraries, among other programs. Please note that not all school programs are statutorily required to report, and many types of programs can be reported at any time of the year, so this dataset is by nature an incomplete snapshot in time.
Maintenance of these locations is a result of an ongoing project to identify current school program locations where Food and Nutrition Services Office (FNS) programs are utilized. The FNS Office is in the Minnesota Department of Education (MDE). GIS staff at MDE maintain the dataset using school program and physical addresses provided by local education authorities (LEAs) for an MDE database called "MDE ORG". MDE GIS staff track weekly changes to program locations, along with comprehensive reviews each summer. All records have been reviewed for accuracy or edited at least once since January 1, 2020.
Note that there may remain errors due to the number of program locations and inconsistency in reporting from LEAs and other organizations. Some organization types (such as colleges and treatment programs) are not subject to annual reporting requirements, so various records included in this file may in fact be inactive or inaccurately located.
Note that multiple programs may occur at the same location and are represented as separate records. For example, an elementary and secondary school may be in the same building, but each has a separate record in the data layer. Users may leverage the "CLASS" and "ORGTYPE" attributes to filter and sort records according to their needs. In general, records at the same physical address will be located at the same coordinates.
This data is also available in CSV format. For that format only, OBJECTID and Shape columns are removed, and the Shape column is replaced by Latitude and Longitude columns.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open-Source GIS plays a pivotal role in advancing GIS education, fostering research collaboration, and supporting global sustainability by enabling the sharing of data, models, and knowledge. However, the integration of big data, deep learning methods, and artificial intelligence deep learning in geospatial research presents significant challenges for GIS education. These include increasing software learning costs, higher computational power demand, and the management of fragmented information in the Web 2.0 context. Addressing these challenges while integrating emerging GIS innovations and restructuring GIS knowledge systems is crucial for the evolution of GIS Education 3.0. This study introduces a Visual Programming-based Geospatial Cyberinfrastructure (V-GCI) framework, integrated with the replicable and reproducible (R&R) framework, to enhance GIS function compatibility, learning scalability, and web GIS application interoperability. Through a case study on spatial accessibility using the generalized two-step floating catchment area method (G2SFCA), this paper demonstrates how V-GCI can reshape the GIS knowledge tree and its potential to enhance replicability and reproducibility within open-source GIS Education 3.0.