https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Software market size was valued at approximately USD 7.8 billion in 2023 and is projected to reach USD 15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3% during the forecast period. This impressive growth can be attributed to the increasing demand for efficient data management tools across various industries, which rely on spatial data for decision-making and strategic planning. The rapid advancements in technology, such as the integration of AI and IoT with GIS software, have further propelled the market, enabling organizations to harness the full potential of geographic data in innovative ways.
One of the primary growth drivers of the GIS Software market is the burgeoning need for urban planning and smart city initiatives worldwide. As urbanization trends escalate, cities are increasingly relying on GIS technology to manage resources more effectively, optimize transportation networks, and enhance public safety. The ability of GIS software to provide real-time data and spatial analysis is vital for city planners and administrators faced with the challenges of modern urban environments. Furthermore, the trend towards digital transformation in governmental organizations is boosting the adoption of GIS solutions, as they seek to improve operational efficiency and service delivery.
The agricultural sector is also experiencing significant transformations due to the integration of GIS software, which is another pivotal growth factor for the market. Precision agriculture, which involves the use of GIS technologies to monitor and manage farming practices, is enabling farmers to increase crop yields while reducing resource consumption. By leveraging spatial data, farmers can make informed decisions about planting, irrigation, and harvesting, ultimately leading to more sustainable agricultural practices. This trend is particularly prominent in regions where agriculture forms a substantial portion of the economy, encouraging the adoption of advanced GIS tools to maintain competitive advantage.
Another influential factor contributing to the growth of the GIS Software market is the increasing importance of environmental management and disaster response. GIS technology plays a crucial role in assessing environmental changes, managing natural resources, and planning responses to natural disasters. The ability to overlay various data sets onto geographic maps allows for better analysis and understanding of environmental phenomena, making GIS indispensable in tackling issues such as climate change and resource depletion. Moreover, governments and organizations are investing heavily in GIS tools that aid in disaster preparedness and response, ensuring timely and effective action during emergencies.
The evolution of GIS Mapping Software has been instrumental in transforming how spatial data is utilized across various sectors. These software solutions offer robust tools for visualizing, analyzing, and interpreting geographic data, enabling users to make informed decisions based on spatial insights. With the ability to integrate multiple data sources, GIS Mapping Software provides a comprehensive platform for conducting spatial analysis, which is crucial for applications ranging from urban planning to environmental management. As technology continues to advance, the capabilities of GIS Mapping Software are expanding, offering more sophisticated features such as 3D visualization and real-time data processing. These advancements are not only enhancing the utility of GIS tools but also making them more accessible to a wider range of users, thereby driving their adoption across different industries.
Regionally, North America and Europe have traditionally dominated the GIS Software market, thanks to their robust technological infrastructure and higher adoption rates of advanced technologies. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increased government spending on infrastructure development, and the expanding telecommunications sector. The growing awareness and adoption of GIS solutions in countries like China and India are significant contributors to this regional growth. Furthermore, Latin America and the Middle East & Africa regions are slowly catching up, with ongoing investments in smart city projects and infrastructure development driving the demand for GIS software.
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
What will be the Size of the GIS Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.
The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.
How is this GIS Industry segmented?
The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.
The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.
Request Free Sample
The Software segment was valued at USD 5.06 billion in 2019
This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.
Interagency Wildland Fire Perimeter History (IFPH) Overview This national fire history perimeter data layer of conglomerated agency perimeters was developed in support of the WFDSS application and wildfire decision support. The layer encompasses the fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2024 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer, links are provided where possible below. In addition, many agencies are now using WFIGS as their authoritative source, beginning in mid-2020.Alaska fire history (WFIGS pull for updates began 2022)USDA FS Regional Fire History Data (WFIGS pull for updates began 2024)BLM Fire Planning and Fuels (WFIGS pull for updates began 2020)National Park Service - Includes Prescribed Burns (WFIGS pull for updates began 2020)Fish and Wildlife Service (WFIGS pull for updates began 2024)Bureau of Indian Affairs (Incomplete, 2017-2018 from BIA, WFIGS pull for updates began 2020)CalFire FRAS - Includes Prescribed Burns (CALFIRE only source, non-fed fires)WFIGS - updates included since mid-2020, unless otherwise noted Data LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoritative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.Attributes This dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer maintained by IrWIN. (This unique identifier may NOT replace the GeometryID core attribute) FORID - Unique identifier assigned to each incident record in the Fire Occurence Data Records system. (This unique identifier may NOT replace the GeometryID core attribute) INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name. FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT). AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin. SOURCE - System/agency source of record from which the perimeter came. DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy. MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Other GIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9 UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001 LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456. UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMP COMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or Unknown GEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID). Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4,781 Records thru 2021), other federal sources for AK data removed. No RX data included.CA: GEOID = OBJECT ID of downloaded file geodatabase (8,480 Records, federal fires removed, includes RX. Significant cleanup occurred between 2023 and 2024 data pulls resulting in fewer perimeters).FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2,959 Records), includes RX.BIA: GEOID = "FireID" 2017/2018 data (382 records). No RX data included.NPS: GEOID = EVENT ID 15,237 records, includes RX. In 2024/2023 dataset was reduced by combining singlepart to multpart based on valid Irwin, FORID or Unique Fire IDs. RX data included.BLM: GEOID = GUID from BLM FPER (23,730 features). No RX data included.USFS: GEOID=GLOBALID from EDW records (48,569 features), includes RXWFIGS: GEOID=polySourceGlobalID (9724 records added or replaced agency record since mid-2020)Attempts to repair Unique Fire ID not made. Attempts to repair dates not made. Verified all IrWIN IDs and FODRIDs present via joins and cross checks to the respective dataset. Stripped leading and trailing spaces, fixed empty values to
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
Contains results of full FeatureServer crawl of the US Fisheries and Wildlife Open Data site (). Each dataset contains an item.json with basic metadata, though many do not expose direct GIS file downloads through their ArcGIS data sources. For those that do, a GeoJSON file has been downloaded for each layer, as that is the only format available through USFW FeatureServers. Datasets are sorted by category if available, if not they are within the Misc folder, and are then sorted by tag. Includes US Fish and Wildlife Service Open Data.csv, a record of all datasets present.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Mapping Software market size was valued at approximately USD 8.5 billion in 2023 and is projected to reach around USD 17.5 billion by 2032, growing at a CAGR of 8.3% from 2024 to 2032. This robust growth is driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, disaster management, and agriculture.
One of the primary growth factors for the GIS Mapping Software market is the rising need for spatial data analytics. Organizations are increasingly recognizing the value of geographical data in making informed decisions, driving the demand for sophisticated mapping solutions. Furthermore, advancements in satellite imaging technology and the increasing availability of high-resolution imagery are enhancing the capabilities of GIS software, making it a crucial tool for various applications.
Another significant driver is the integration of GIS with emerging technologies such as artificial intelligence (AI) and the Internet of Things (IoT). These integrations are facilitating real-time data processing and analysis, thereby improving the efficiency and accuracy of GIS applications. For instance, in urban planning and disaster management, real-time data can significantly enhance predictive modeling and response strategies. This synergy between GIS and cutting-edge technologies is expected to fuel market growth further.
The growing emphasis on sustainable development and smart city initiatives globally is also contributing to the market's expansion. Governments and private entities are investing heavily in GIS technologies to optimize resource management, enhance public services, and improve urban infrastructure. These investments are particularly evident in developing regions where urbanization rates are high, and there is a pressing need for efficient spatial planning and management.
In terms of regional outlook, North America holds a significant share of the GIS Mapping Software market, driven by robust technological infrastructure and high adoption rates across various industries. However, Asia Pacific is expected to witness the highest growth rate during the forecast period. This growth is attributed to rapid urbanization, increasing government initiatives for smart cities, and rising investments in infrastructure development.
The Geographic Information Systems Platform has become an integral part of modern spatial data management, offering a comprehensive framework for collecting, analyzing, and visualizing geographic data. This platform facilitates the integration of diverse data sources, enabling users to create detailed maps and spatial models that support decision-making across various sectors. With the increasing complexity of urban environments and the need for efficient resource management, the Geographic Information Systems Platform provides the tools necessary for real-time data processing and analysis. Its versatility and scalability make it an essential component for organizations looking to leverage geospatial data for strategic planning and operational efficiency.
The GIS Mapping Software market is segmented by component into software and services. The software segment dominates the market, primarily due to the continuous advancements in GIS software capabilities. Modern GIS software offers a range of functionalities, from basic mapping to complex spatial analysis, making it indispensable for various sectors. These software solutions are increasingly user-friendly, allowing even non-experts to leverage geospatial data effectively.
Moreover, the software segment is witnessing significant innovation with the integration of AI and machine learning algorithms. These advancements are enabling more sophisticated data analysis and predictive modeling, which are crucial for applications such as disaster management and urban planning. The adoption of cloud-based GIS software is also on the rise, offering scalability and real-time data processing capabilities, which are essential for dynamic applications like transport management.
The services segment, although smaller than the software segment, is also experiencing growth. This includes consulting, implementation, and maintenance services that are critical for the successful deployment and operation of GIS systems. The increasing complexity of GIS applications nec
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protection's CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990+. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system. This service depicts the WHRTYPE description from the fveg dataset (Wildlife Habitat Relationship classes).The full dataset can be downloaded in raster format here: GIS Mapping and Data Analytics | CAL FIREThe service represents the latest release of the data, and is updated when a new version is released. Currently it represents fveg15_1.
Digital line graph (DLG) data are digital representations of cartographic information. DLGs of map features are converted to digital form from maps and related sources. Intermediate-scale DLG data are derived from USGS 1:100,000-scale 30- by 60-minute quadrangle maps. If these maps are not available, Bureau of Land Management planimetric maps at a scale of 1:100,000 are used. Intermediate-scale DLGs are sold in five categories: (1) Public Land Survey System; (2) boundaries; (3) transportation; (4) hydrography; and (5) hypsography. All DLG data distributed by the USGS are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, and have passed certain quality-control checks.
A GIS is a system or a set of tools used to interpret business and geospatial data. It integrates hardware, software, and data for processing business and geographically referenced data. This system digitizes the received geospatial data and processes them to provide the desired output. GIS is used across various sectors, such as Natural Resources, Utilities, Federal Government, Communication and Telecom, Military/Law Enforcement, and Others, for various purposes such as disaster management, finding location details, viewing maps, marketing, designing facilities, and others. TechNavio's analysts forecast the GIS market in the Telecommunication industry to grow at a CAGR of 10.89 percent over the period 2013-2018.
Covered in this Report The GIS market in the Telecommunication industry can be divided into three product segments: Software, Data, and Services. TechNavio's report, the GIS Market in the Telecommunication Industry 2014-2018, has been prepared based on an in-depth market analysis with inputs from industry experts. The report covers the global region; it also covers the GIS market landscape and its growth prospects in the coming years. The report also includes a discussion of the key vendors operating in this market.
Key Vendors • Esri • Hexagon • MacDonald, Dettwiler and Associates
Other Prominent Vendors • Autodesk • Bentley Systems • Digital Globe • GE Energy • Pitney Bowes
Key Market Driver • Increase in the Need for Real-time Knowledge on Network Structure • For a full, detailed list, view our report
Key Market Challenge • Growing Popularity of Open-source Software • For a full, detailed list, view our report
Key Market Trend • Increased Usage of GIS in Broadcasting • For a full, detailed list, view our report
Key Questions Answered in this Report • What will the market size be in 2018 and what will the growth rate be? • What are the key market trends? • What is driving this market? • What are the challenges to market growth? • Who are the key vendors in this market space? • What are the market opportunities and threats faced by the key vendors? • What are the strengths and weaknesses of the key vendors
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Snow residence time (in days) and April 1 snow water equivalent (in mm) were modeled using the spatial analog models of Luce et al., 2014 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013WR014844); see also Lute and Luce, 2017 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR020752). These models are built on precipitation and snow data from Snowpack Telemetry (SNOTEL) stations across the western United States and temperature data from the TopoWx dataset (https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.4127). They were calculated for the historical (1975-2005) and future (2071-2090) time periods, along with absolute and percent change.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
GISCO (Geographic Information System of the COmmission) is responsible for meeting the European Commission's geographical information needs at three levels: the European Union, its member countries, and its regions.
In addition to creating statistical and other thematic maps, GISCO manages a database of geographical information, and provides related services to the Commission. Its database contains core geographical data covering the whole of Europe, such as administrative boundaries, and thematic geospatial information, such as population grid data. Some data are available for download by the general public and may be used for non-commercial purposes. For further details and information about any forthcoming new or updated datasets, see http://ec.europa.eu/eurostat/web/gisco/geodata.
This metadata refers to the whole content of GISCO reference database extracted in July 2018, which contains both public datasets and datasets to be used only internally by the EEA. The document GISCO-ConditionsOfUse.pdf provided with the dataset gives information on the copyrighted data sources, the mandatory acknowledgement clauses and re-dissemination rights. The license conditions for EuroGeographic datasets in GISCO are provided in a standalone document "LicenseConditions_EuroGeographics.pdf".
The database is provided in GDB and in SQLITE, with datasets at scales from 1:60M to 1:100K, with reference years spanning until 2016. The database manual, a file with the content of the database, and a document with the naming conventions are also provided with the database. For particular datasets extracted from this database (NUTS 2016 and COUNTRIES 2016) please refer to the associated resources in the EEA SDI catalogue.
NOTE: This metadata file is only for internal EEA purposes and in no case replaces the official metadata provided by Eurostat.
description: Various telecommunication datasets such as cellphone towers and service areas, land mobile station locations, AM, FM, and TV communication, extracted from the FCC Licensing Database, can be individually downloaded from the FCC GIS data site. Addiitonally, a full dataset download of all GIS files is packaged with an ArcExplorer(R) viewing capability for users who do not have full GIS capability.; abstract: Various telecommunication datasets such as cellphone towers and service areas, land mobile station locations, AM, FM, and TV communication, extracted from the FCC Licensing Database, can be individually downloaded from the FCC GIS data site. Addiitonally, a full dataset download of all GIS files is packaged with an ArcExplorer(R) viewing capability for users who do not have full GIS capability.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, coastal buffers are removed, leaving the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal Buffers (this dataset)Place AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.
Notice: this is not the latest Heat Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. The Heat Anomalies is also reclassified into a Heat Severity raster also published on this site. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Full Range Heat Anomalies - USA 2022Full Range Heat Anomalies - USA 2021Full Range Heat Anomalies - USA 2020Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
24K Hydro File Geodatabase, including bank lines, flow lines, junction points, hydro lines, water bodies, hydro points, and a network. Access the user guide, data dictionaries, and metadata below.The DNR Hydrography database was developed statewide using several 1:24,000-scale sources. This data layer includes information about surface water features represented on the USGS 1:24,000-scale topographic map series such as perennial and intermittent streams, lakes, etc. Because the sources of the Hydrography data span many years and originate from several sources, the data may reflect areas of transition from one source to another. As a result, the water features as represented in the Hydrography data may not always match what you see on a particular USGS quad or Digital Raster Graphic (DRG). General source information is presented on this map: Wisconsin Hydrography Source Information. Note: Wetlands delineations are not included in the DNR Hydrography data layer. For information about DNR Wetlands data, see the Wisconsin Wetland Inventory web page.Report errors in this data to Dennis Wiese (dennis.wiese@wisconsin.gov) with the following information:HYDROID of the feature in question; OR if the feature is missing, a location coordinate or description (e.g. latitude/longitude, Public Land Survey System Township, Range, and Section identifier) that identifies the area in question.Optional but very helpful: a screen capture of the area in question, or the Water Body Identification Code (WBIC) of the feature in question.DNR staff can access the hydrography database in the agency's central GIS data repository. The hydrography feature classes are stored in the feature dataset "W23324.WD_HYDRO_DATA_24K".USER GUIDES AND DOCUMENTATION: WDNR_HYDRO_24k_GETTING STARTED WDNR HYDRO 24K UPDATES DOCUMENT 24K HYDRO DECISION RULESData Dictionaries and Metadata WDNR_HYDRO_24k_waterbody_data_dict WDNR_HYDRO_24k_waterbody_metadata WDNR_HYDRO_24k_flowline_data_dict WDNR_HYDRO_24k_flowline_metadata WDNR_HYDRO_24k_bank_data_dict WDNR_HYDRO_24k_bank_metadata WDNR_HYDRO_24k_junction_data_dict WDNR_HYDRO_24k_junction_metadata WDNR_HYDRO_24k_line_data_dict WDNR_HYDRO_24k_line_metadata WDNR_HYDRO_24k_flowline_wbic_data_dict WDNR_HYDRO_24k_flowline_wbic_metadata WDNR_HYDRO_24k_waterbody_wbic_data_dict WDNR_HYDRO_24k_waterbody_wbic_metadataArcMap Layer (.lyr) Files 24k Hydro Flowline Duration 24k Hydro Bank Lines 24k Hydro Flowline Streams 24k Hydro Waterbody Open Water
description:
Maps and other GIS products and related information provided by the North Dakota Department of Transportation
Constraints:
Not to be used for navigation, for informational purposes only. See full disclaimer for more information
Maps and other GIS products and related information provided by the North Dakota Department of Transportation
Constraints:
Not to be used for navigation, for informational purposes only. See full disclaimer for more information
Parcel boundaries in Onslow County with property related information and links to tax records. The parcel data is continuously updated and maintained by Onslow County. New parcels will show up in the map service within minutes of being digitized by the County GIS. Any questions please call the Onslow County GIS Department at 1-910-937-1190, Monday - Friday 8am - 5pm.
Feature layer containing the authoritative future land use polygon for Sioux Falls, South Dakota. This layer includes the full extent of the authoritative future growth area (Development Areas), including the areas already annexed and developed.
Data on the true and full value determination (FVD) of all personal and real property in Alaska Boroughs. The FVD is utilized in calculating the require local contributions that some Boroughs have to pay in order to fund their local school districts.Source: Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs, Office of the State Assessor
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Software market size was valued at approximately USD 7.8 billion in 2023 and is projected to reach USD 15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3% during the forecast period. This impressive growth can be attributed to the increasing demand for efficient data management tools across various industries, which rely on spatial data for decision-making and strategic planning. The rapid advancements in technology, such as the integration of AI and IoT with GIS software, have further propelled the market, enabling organizations to harness the full potential of geographic data in innovative ways.
One of the primary growth drivers of the GIS Software market is the burgeoning need for urban planning and smart city initiatives worldwide. As urbanization trends escalate, cities are increasingly relying on GIS technology to manage resources more effectively, optimize transportation networks, and enhance public safety. The ability of GIS software to provide real-time data and spatial analysis is vital for city planners and administrators faced with the challenges of modern urban environments. Furthermore, the trend towards digital transformation in governmental organizations is boosting the adoption of GIS solutions, as they seek to improve operational efficiency and service delivery.
The agricultural sector is also experiencing significant transformations due to the integration of GIS software, which is another pivotal growth factor for the market. Precision agriculture, which involves the use of GIS technologies to monitor and manage farming practices, is enabling farmers to increase crop yields while reducing resource consumption. By leveraging spatial data, farmers can make informed decisions about planting, irrigation, and harvesting, ultimately leading to more sustainable agricultural practices. This trend is particularly prominent in regions where agriculture forms a substantial portion of the economy, encouraging the adoption of advanced GIS tools to maintain competitive advantage.
Another influential factor contributing to the growth of the GIS Software market is the increasing importance of environmental management and disaster response. GIS technology plays a crucial role in assessing environmental changes, managing natural resources, and planning responses to natural disasters. The ability to overlay various data sets onto geographic maps allows for better analysis and understanding of environmental phenomena, making GIS indispensable in tackling issues such as climate change and resource depletion. Moreover, governments and organizations are investing heavily in GIS tools that aid in disaster preparedness and response, ensuring timely and effective action during emergencies.
The evolution of GIS Mapping Software has been instrumental in transforming how spatial data is utilized across various sectors. These software solutions offer robust tools for visualizing, analyzing, and interpreting geographic data, enabling users to make informed decisions based on spatial insights. With the ability to integrate multiple data sources, GIS Mapping Software provides a comprehensive platform for conducting spatial analysis, which is crucial for applications ranging from urban planning to environmental management. As technology continues to advance, the capabilities of GIS Mapping Software are expanding, offering more sophisticated features such as 3D visualization and real-time data processing. These advancements are not only enhancing the utility of GIS tools but also making them more accessible to a wider range of users, thereby driving their adoption across different industries.
Regionally, North America and Europe have traditionally dominated the GIS Software market, thanks to their robust technological infrastructure and higher adoption rates of advanced technologies. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increased government spending on infrastructure development, and the expanding telecommunications sector. The growing awareness and adoption of GIS solutions in countries like China and India are significant contributors to this regional growth. Furthermore, Latin America and the Middle East & Africa regions are slowly catching up, with ongoing investments in smart city projects and infrastructure development driving the demand for GIS software.