Facebook
Twitter
According to our latest research, the global Mobile GIS Data Collection Software market size reached USD 2.14 billion in 2024, and is anticipated to grow at a robust CAGR of 13.7% during the forecast period, reaching approximately USD 6.42 billion by 2033. This strong growth trajectory is primarily driven by the increasing demand for real-time geospatial data across multiple industries, the proliferation of mobile devices, and the integration of advanced technologies such as IoT and AI into GIS solutions. As organizations globally seek to enhance operational efficiency and decision-making capabilities, the adoption of mobile GIS data collection software continues to accelerate, reshaping the landscape of field data management and spatial analytics.
One of the pivotal growth factors for the Mobile GIS Data Collection Software market is the rapid digital transformation across industries such as utilities, transportation, agriculture, and government. Organizations are increasingly leveraging geospatial data to streamline field operations, optimize resource allocation, and improve asset management. The shift towards digitized workflows has created a surge in demand for mobile GIS solutions that enable real-time data capture, analysis, and sharing from remote locations. Furthermore, the growing emphasis on smart infrastructure and sustainable urban planning has amplified the need for accurate, up-to-date geographic information, positioning mobile GIS software as a critical tool in supporting these initiatives. The convergence of cloud computing, 5G connectivity, and mobile technologies is further enhancing the capabilities and accessibility of GIS platforms, making them indispensable for modern enterprises.
Another significant driver is the increasing adoption of IoT and sensor technologies, which are generating vast volumes of spatial data that require efficient collection, processing, and analysis. Mobile GIS data collection software enables seamless integration with IoT devices, allowing for automated data acquisition and real-time monitoring of assets, environmental conditions, and infrastructure. This capability is particularly valuable in sectors like environmental monitoring, utilities management, and agriculture, where timely and accurate geospatial data is essential for informed decision-making. Additionally, advancements in artificial intelligence and machine learning are empowering GIS software to deliver predictive analytics, anomaly detection, and advanced visualization, further expanding the application scope and value proposition of mobile GIS solutions.
The market is also benefiting from the increasing focus on regulatory compliance and safety standards, particularly in industries such as oil and gas, construction, and transportation. Mobile GIS data collection software facilitates compliance by providing accurate and auditable records of field activities, asset inspections, and environmental assessments. Moreover, the growing need for disaster management, emergency response, and public health surveillance is driving government agencies to invest in robust GIS platforms that support rapid data collection and situational awareness. As a result, vendors are continuously innovating to offer user-friendly, scalable, and secure solutions that cater to the evolving needs of diverse end-users, further fueling market expansion.
The integration of Mobile Mapping System technology into mobile GIS solutions is revolutionizing the way geospatial data is collected and analyzed. By utilizing vehicles equipped with advanced sensors and cameras, Mobile Mapping Systems enable the rapid and accurate capture of geospatial data across large areas. This technology is particularly beneficial for urban planning, infrastructure management, and environmental monitoring, where timely and precise data is crucial. As industries strive to enhance their operational capabilities, the adoption of Mobile Mapping Systems is becoming increasingly prevalent, providing a competitive edge through improved data accuracy and efficiency.
Regionally, North America currently dominates the Mobile GIS Data Collection Software market, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology providers, high adoption rates of digital soluti
Facebook
TwitterHomeland Infrastructure Foundation-Level Data (HIFLD) geospatial data sets containing information on Mobile Home Parks.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global mobile GIS data collection software market size reached USD 1.64 billion in 2024. The market is experiencing robust expansion, driven by the increasing demand for real-time geospatial data across industries. The market is projected to grow at a CAGR of 14.2% from 2025 to 2033, reaching a forecasted value of USD 4.46 billion by 2033. This growth is primarily fueled by the widespread adoption of mobile GIS solutions for field data collection, asset management, and environmental monitoring, as organizations seek efficient, accurate, and scalable geospatial data collection tools to enhance operational decision-making.
One of the primary growth factors propelling the mobile GIS data collection software market is the rapid digital transformation occurring across multiple sectors, such as utilities, government, agriculture, and transportation. Organizations are increasingly recognizing the value of real-time geospatial data in optimizing workflows, improving resource allocation, and ensuring regulatory compliance. The integration of mobile GIS solutions with Internet of Things (IoT) devices and advanced sensors enables seamless data capture, transmission, and analysis, empowering field teams to make informed decisions on the go. Furthermore, advancements in mobile hardware and connectivity, such as the proliferation of 5G networks, have significantly enhanced the usability and effectiveness of mobile GIS platforms, making them indispensable tools for field operations.
Another significant driver is the growing emphasis on environmental monitoring and sustainability initiatives worldwide. Governments and private organizations are leveraging mobile GIS data collection software to track environmental parameters, monitor land use changes, and support conservation efforts. The ability to collect, visualize, and analyze spatial data in real time is critical for managing natural resources, assessing environmental risks, and responding to emergencies such as natural disasters or hazardous material spills. As climate change concerns intensify and regulatory frameworks become more stringent, the demand for robust and scalable mobile GIS solutions is expected to rise, further boosting market growth.
The market is also benefiting from the increasing adoption of cloud-based mobile GIS solutions, which offer unparalleled scalability, flexibility, and cost-effectiveness. Cloud deployment enables organizations to centralize data storage, streamline collaboration, and ensure data integrity across geographically dispersed teams. The shift towards Software-as-a-Service (SaaS) models is reducing the upfront costs associated with traditional GIS deployments and making advanced geospatial analytics accessible to small and medium-sized enterprises (SMEs) as well as large corporations. This democratization of GIS technology is expanding the addressable market and fostering innovation in application development, user experience, and integration capabilities.
Regionally, North America remains the dominant market, accounting for the largest revenue share in 2024, driven by high technology adoption, a mature IT infrastructure, and the presence of leading GIS software providers. However, Asia Pacific is emerging as the fastest-growing region, supported by rapid urbanization, infrastructure development, and government initiatives promoting digital transformation. Europe also holds a significant market share, particularly in sectors such as utilities management and environmental monitoring. Meanwhile, Latin America and the Middle East & Africa are witnessing increasing investments in GIS technologies, reflecting the global trend toward smarter, data-driven decision-making across industries.
The mobile GIS data collection software market is segmented by component into software and services, each playing a pivotal role in driving the adoption and effectiveness of GIS solutions. The software segment encompasses a wide array of applications designed for data capture, visualization, editing, and analysis on mobile devices. These software solutions are increasingly equipped with advanced features such as offline data collection, real-time synchronization, customizable workflows, and integration with third-party systems. The evolution of user-friendly interfaces and mobile-first design principles has further acceler
Facebook
TwitterGapMaps GIS Data by Azira uses location data on mobile phones sourced by Azira which is collected from smartphone apps when the users have given their permission to track their location. It can shed light on consumer visitation patterns (“where from” and “where to”), frequency of visits, profiles of consumers and much more.
Businesses can utilise GIS data to answer key questions including:
- What is the demographic profile of customers visiting my locations?
- What is my primary catchment? And where within that catchment do most of my customers travel from to reach my locations?
- What points of interest drive customers to my locations (ie. work, shopping, recreation, hotel or education facilities that are in the area) ?
- How far do customers travel to visit my locations?
- Where are the potential gaps in my store network for new developments?
- What is the sales impact on an existing store if a new store is opened nearby?
- Is my marketing strategy targeted to the right audience?
- Where are my competitor's customers coming from?
Mobile Location data provides a range of benefits that make it a valuable GIS Data source for location intelligence services including: - Real-time - Low-cost at high scale - Accurate - Flexible - Non-proprietary - Empirical
Azira have created robust screening methods to evaluate the quality of Mobile location data collected from multiple sources to ensure that their data lake contains only the highest-quality mobile location data.
This includes partnering with trusted location SDK providers that get proper end user consent to track their location when they download an application, can detect device movement/visits and use GPS to determine location co-ordinates.
Data received from partners is put through Azira's data quality algorithm discarding data points that receive a low quality score.
Use cases in Europe will be considered on a case to case basis.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Mobile Library Stops in York. For further information please visit explore York. *Please note that the data published within this dataset is a live API link to CYC's GIS server. Any changes made to the master copy of the data will be immediately reflected in the resources of this dataset.The date shown in the "Last Updated" field of each GIS resource reflects when the data was first published.
Facebook
TwitterGapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent GIS data at 150m grid levels across Asia and MENA. Understand who lives in a catchment, where they work and their spending potential.
Facebook
TwitterThese data were automated to provide an accurate high-resolution historical shoreline of Mobile Bay, Alabama suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A point feature class containing locations of the Miami-Dade County Public Library System's Bookmobile stops.Updated: Quarterly The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
Facebook
TwitterGapMaps GIS Data by Azira provides actionable insights on consumer travel patterns at a global scale empowering Marketing and Operational Leaders to confidently reach, understand, and market to highly targeted audiences and optimize their business results.
Facebook
TwitterDetailed, building -specific assessment of indoor mobile signal strength and propagation across all licensed mobile operators in a given country. Signal values are provided for each H3-12 hexagon inside the building (resolution approx. 20 x 20 meters). The data is presented in GIS-compatible formats such as gpkg and geojson. The data is obtained using crowdsourced data and advanced geo-spatial algorithms and includes data on the presence of indoor coverage systems. This data can be purchased on a building-by-building basis
Typical data use cases are in the following sectors: - B2B telecommunications: assess indoor coverage quality to optimise deployment of mobile-dependent network services (e.g. SD-WAN, mobile backup, etc..). - Mobile telecoms: Mobile operators and indoor coverage solution providers (e.g. DAS providers) can use this data to identify buildings and building owners for the deployment of indoor coverage systems - Commercial real estate and property: ascertain the quality of indoor mobile coverage to ensure that tenants can actually conduct business in your premises
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Data Collector market! This comprehensive analysis reveals a $2.5B market in 2025, projected to reach $4.2B by 2033, fueled by precision agriculture, infrastructure development, and technological advancements. Explore key trends, drivers, restraints, and leading companies shaping this dynamic sector.
Facebook
TwitterThese data provide an accurate high-resolution shoreline compiled from imagery of PORT OF MOBILE, AL . This vector shoreline data is based on an office interpretation of imagery that may be suitable as a geographic information system (GIS) data layer. This metadata describes information for both the line and point shapefiles. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GIS-Based Multi-Criteria Decision Analysis for solar EVs (Electric Vehicles) and mobile app data
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A polygon feature class of Mobile Home Parks and Recreational vehicles within Miami-Dade County.Updated: Annually The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere
Facebook
TwitterPoint geometry with attributes displaying mobile home parks in East Baton Rouge Parish, Louisiana.Metadata
Facebook
TwitterFeature layer containing authoritative crime free mobile home points for Sioux Falls, South Dakota.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
These data were automated to provide an accurate high-resolution historical shoreline of Mobile Bay, AL suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808
Facebook
TwitterLand mobile broadcast locations in Los Angeles CountyThis dataset is maintained through the County of Los Angeles Location Management System. The Location Management System is used by the County of Los Angeles GIS Program to maintain a single, comprehensive geographic database of locations countywide. For more information on the Location Management System, visithttp://egis3.lacounty.gov/lms/.
Facebook
TwitterMobile home park polygons throughout Pierce County. The parks are registered to tax parcel dataset and do not include individual mobile home locations. That data can be found in the "Mobile Homes" layer instead. Please read metadata (https://matterhorn.piercecountywa.gov/GISmetadata/pdbatr_mobilehomeparks.html) for additional information. Any use or data download constitutes acceptance of the Terms of Use (https://matterhorn.piercecountywa.gov/disclaimer/PierceCountyGISDataTermsofUse.pdf).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cleaned dataset for the Pharos application 2023-2024 data collection period (May 2023-March 2024). This dataset includes the full recurring network measurement (RNM), landmark (LM) datasets, as well as the county geographies used for the study catchment area. Also included in this dataset are a text document containing the necessary requirements, as well as python script to clean and visualize the collected data replicating the methods used in our published analysis.
Facebook
Twitter
According to our latest research, the global Mobile GIS Data Collection Software market size reached USD 2.14 billion in 2024, and is anticipated to grow at a robust CAGR of 13.7% during the forecast period, reaching approximately USD 6.42 billion by 2033. This strong growth trajectory is primarily driven by the increasing demand for real-time geospatial data across multiple industries, the proliferation of mobile devices, and the integration of advanced technologies such as IoT and AI into GIS solutions. As organizations globally seek to enhance operational efficiency and decision-making capabilities, the adoption of mobile GIS data collection software continues to accelerate, reshaping the landscape of field data management and spatial analytics.
One of the pivotal growth factors for the Mobile GIS Data Collection Software market is the rapid digital transformation across industries such as utilities, transportation, agriculture, and government. Organizations are increasingly leveraging geospatial data to streamline field operations, optimize resource allocation, and improve asset management. The shift towards digitized workflows has created a surge in demand for mobile GIS solutions that enable real-time data capture, analysis, and sharing from remote locations. Furthermore, the growing emphasis on smart infrastructure and sustainable urban planning has amplified the need for accurate, up-to-date geographic information, positioning mobile GIS software as a critical tool in supporting these initiatives. The convergence of cloud computing, 5G connectivity, and mobile technologies is further enhancing the capabilities and accessibility of GIS platforms, making them indispensable for modern enterprises.
Another significant driver is the increasing adoption of IoT and sensor technologies, which are generating vast volumes of spatial data that require efficient collection, processing, and analysis. Mobile GIS data collection software enables seamless integration with IoT devices, allowing for automated data acquisition and real-time monitoring of assets, environmental conditions, and infrastructure. This capability is particularly valuable in sectors like environmental monitoring, utilities management, and agriculture, where timely and accurate geospatial data is essential for informed decision-making. Additionally, advancements in artificial intelligence and machine learning are empowering GIS software to deliver predictive analytics, anomaly detection, and advanced visualization, further expanding the application scope and value proposition of mobile GIS solutions.
The market is also benefiting from the increasing focus on regulatory compliance and safety standards, particularly in industries such as oil and gas, construction, and transportation. Mobile GIS data collection software facilitates compliance by providing accurate and auditable records of field activities, asset inspections, and environmental assessments. Moreover, the growing need for disaster management, emergency response, and public health surveillance is driving government agencies to invest in robust GIS platforms that support rapid data collection and situational awareness. As a result, vendors are continuously innovating to offer user-friendly, scalable, and secure solutions that cater to the evolving needs of diverse end-users, further fueling market expansion.
The integration of Mobile Mapping System technology into mobile GIS solutions is revolutionizing the way geospatial data is collected and analyzed. By utilizing vehicles equipped with advanced sensors and cameras, Mobile Mapping Systems enable the rapid and accurate capture of geospatial data across large areas. This technology is particularly beneficial for urban planning, infrastructure management, and environmental monitoring, where timely and precise data is crucial. As industries strive to enhance their operational capabilities, the adoption of Mobile Mapping Systems is becoming increasingly prevalent, providing a competitive edge through improved data accuracy and efficiency.
Regionally, North America currently dominates the Mobile GIS Data Collection Software market, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology providers, high adoption rates of digital soluti