Facebook
TwitterThe table Firm survey wave 1 and 2 (GIS) is part of the dataset SEDRI Ethiopia firm survey (GIS), available at https://stanford.redivis.com/datasets/rxq3-9x047we25. It contains 1585 rows across 3377 variables.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global land survey software market is experiencing robust growth, driven by increasing adoption of advanced technologies like GIS, cloud computing, and AI in surveying operations. The market's size in 2025 is estimated at $2.5 billion, exhibiting a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033. This growth is fueled by several key factors. Firstly, the rising demand for precise and efficient land surveying in infrastructure development, urban planning, and construction projects is a significant driver. Secondly, the increasing availability of affordable and user-friendly software solutions is making land surveying technology more accessible to a broader range of users, from small surveying firms to individual professionals. Thirdly, the integration of advanced analytics capabilities within land survey software is enabling improved data analysis and decision-making, leading to better project outcomes and cost efficiencies. Finally, government initiatives promoting digitalization in land administration and mapping further contribute to market expansion. However, the market also faces certain restraints. The high initial investment cost associated with implementing advanced software and hardware can be a barrier for some smaller companies. Additionally, the need for specialized skills and training to effectively utilize these sophisticated tools can limit widespread adoption. Despite these challenges, the long-term outlook for the land survey software market remains positive, primarily due to the continuous advancements in technology and the growing demand for precise land information across various sectors. Key players such as Carlson Software, Microsurvey, GeoMax, Leica Geosystems, Topcon Positioning, Sokkia, Trimble, and Autodesk are actively contributing to market innovation through continuous product development and strategic partnerships. The market segmentation reflects the diverse applications of land survey software across different geographical regions and industries.
Facebook
TwitterThe Digital Geologic-GIS Map of the Ready Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (read_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (read_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (read_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (read_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (read_geology_metadata.txt or read_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterIn support of new permitting workflows associated with anticipated WellSTAR needs, the CalGEM GIS unit extended the existing BLM PLSS Township & Range grid to cover offshore areas with the 3-mile limit of California jurisdiction. The PLSS grid as currently used by CalGEM is a composite of a BLM download (the majority of the data), additions by the DPR, and polygons created by CalGEM to fill in missing areas (the Ranchos, and Offshore areas within the 3-mile limit of California jurisdiction).CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).Update Frequency: As Needed
Facebook
Twitter[Metadata] This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Downloaded from National Geodetic Survey website Feb 2025. Each geodetic control station in this dataset has either a precise Latitude/Longitude used for horizontal control or a precise Orthometric Height used for vertical control, or both. The National Geodetic Survey (NGS) serves as the Nation's depository for geodetic data. The NGS distributes geodetic data worldwide to a variety of users. These geodetic data include the final results of geodetic surveys, software programs to format, compute, verify, and adjust original survey observations or to convert values from one geodetic datum to another, and publications that describe how to obtain and use Geodetic Data products and services.
Note: This data was projected to the State's standard projection/datum of UTM Zone 4, NAD 83 HARN for use in the State's GIS database, The State posts an un-projected version of the layer on its legacy site (https://planning.hawaii.gov/gis/download-gis-data-expanded/#013), or users can visit the National Geodetic Survey site directly, at https://geodesy.noaa.gov/datasheets/.
For additional information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/ngs_geodetic_ctrl_stns_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Facebook
TwitterThe Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Data Collector market! This comprehensive analysis reveals a $2.5B market in 2025, projected to reach $4.2B by 2033, fueled by precision agriculture, infrastructure development, and technological advancements. Explore key trends, drivers, restraints, and leading companies shaping this dynamic sector.
Facebook
TwitterThe prefixes f1_ and f2_ indicate that variables correspond to either wave 1 or wave 2, respectively.
Facebook
TwitterThe Missouri Public Land Survey System is a 1:24,000 scale geographic information systems (GIS) polygon layer based on the 7.5' United States Geological Survey (USGS) topographic maps. This data set has been extensively edited to improve the accuracy of the original product.
Facebook
TwitterThis data layer is an element of the Oregon GIS Framework. This theme contains PLS lines for the State of Oregon. This PLS theme includes donation claims lands. Attributes in this theme show Township Range and Section values.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vegetation surveys included in this dataset have been collected through various vegetation classification and mapping projects, and some were also collected independently from these kinds of projects. Reports for these projects can be found in CDFWs document library see https://nrm.dfg.ca.gov/documents/ContextDocs.aspx?cat=VegCAMP. Links to specific projects are provided with project descriptions below. The surveys are of various types, but many follow the rapid assessment/releve protocol which can be seen here: https://wildlife.ca.gov/Data/VegCAMP/Publications-and-ProtocolsThere are associated disturbance and other environmental data taken for many of these surveys that are not included in this dataset. There are also associated photos. These are available upon request.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This feature class displays the First Divisions data for the dataset that represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific 'production' or operation and maintenance. This data set includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys), and the Bureau of Census 2015 Cartographic State Boundaries. The Entity-Attribute section of this metadata describes these components in greater detail.
Please note that the data on this site, although published at regular intervals, may not be the most current PLSS data that is available from the BLM. Updates to the PLSS data at the BLM State Offices may have occurred since this data was published. To ensure users have the most current data, please refer to the links provided in the PLSS CadNSDI Data Set Availability accessible here: https://gis.blm.gov/EGISDownload/Docs/PLSS_CadNSDI_Data_Set_Availability.pdf or contact the BLM PLSS Data Set Manager.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe United States Public Land Survey (PLS) divided land into one square
mile units, termed sections. Surveyors used trees to locate section corners
and other locations of interest (witness trees). As a result, a systematic
ecological dataset was produced with regular sampling over a large region
of the United States, beginning in Ohio in 1786 and continuing westward.
We digitized and georeferenced archival hand drawn maps of these witness
trees for 27 counties in Ohio. This dataset consists of a GIS point
shapefile with 11,925 points located at section corners, recording 26,028
trees (up to four trees could be recorded at each corner). We retain species
names given on each archival map key, resulting in 70 unique species common
names. PLS records were obtained from hand-drawn archival maps of original
witness trees produced by researchers at The Ohio State University in the
1960’s. Scans of these maps are archived as “The Edgar Nelson Transeau Ohio
Vegetation Survey” at The Ohio State University: http://hdl.handle.net/1811/64106.
The 27 counties are: Adams, Allen, Auglaize, Belmont, Brown, Darke,
Defiance, Gallia, Guernsey, Hancock, Lawrence, Lucas, Mercer, Miami,
Monroe, Montgomery, Morgan, Noble, Ottawa, Paulding, Pike, Putnam, Scioto,
Seneca, Shelby, Williams, Wyandot. Coordinate Reference System:
North American Datum 1983 (NAD83). This material is based upon work supported by the National Science Foundation under grants #DEB-1241874, 1241868, 1241870, 1241851, 1241891, 1241846, 1241856, 1241930.
Facebook
TwitterThe Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (macv_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (macv_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (macv_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (macv_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (macv_geology_metadata.txt or macv_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe goal of this survey is to inform counties on how the placement of GIS within their organization is impacting the effectiveness of GIS, identify areas of improvement and highlight the most effective location for GIS. The survey included questions about the size and location of GIS within their organization and how that impacted their organization.
Facebook
TwitterThis data set contains polygons that represent quarter quarter sections. In 1985, Ramsey County began a 5 year project to modernize it's land records mapping system to create a computerized Land Information System. As part of the project, the County developed an accurate coordinate control base for this mapping system. The 27 existing State and Federal first order accuracy positions in Ramsey County were densified by a GPS (Global Positioning System) Network of 171 second order accuracy positions. These positions were established and recorded on existing public land survey corner monuments and accessory monuments through out the county.
Facebook
TwitterThe PLSS First Division feature class is the sections and other types of divisions that divide the PLSS Townships. This dataset represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance
Facebook
TwitterThe PLSS is the basis for Federal land ownership. This data includes township, range, section (first Division), and Intersected.
There are four layers loaded that are scale dependant with scale dependant labels. At the smallest scales, the state boundaries appear, as the user zooms in Townships and then Section then PLSS Intersected boundaries appears.
Facebook
TwitterThe table Firm survey wave 1 and 2 (GIS) is part of the dataset SEDRI Ethiopia firm survey (GIS), available at https://stanford.redivis.com/datasets/rxq3-9x047we25. It contains 1585 rows across 3377 variables.