https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS in Transportation market size was valued at USD 9.5 billion in 2023 and is expected to reach USD 21.8 billion by 2032, growing at a CAGR of 9.5%. This rapid growth is driven by advancements in spatial data analytics and the increasing need for efficient transportation management systems across various sectors. The surge in urbanization, coupled with the rising adoption of smart city initiatives, has propelled the demand for geographic information systems (GIS) in transportation, making it an indispensable tool for urban planners and transportation authorities.
One of the primary growth factors in the GIS in Transportation market is the rising need for traffic management solutions. With increasing vehicle ownership and congested road networks, the implementation of GIS-based traffic management systems has become crucial. These systems help in real-time traffic monitoring, congestion management, and route optimization, thereby enhancing overall transportation efficiency. Additionally, the integration of GIS with Internet of Things (IoT) devices and sensors provides valuable data to city planners and traffic authorities, enabling better decision-making and improved traffic flow.
Another significant driver for the market is the growing emphasis on asset management in the transportation sector. GIS technology plays a pivotal role in tracking and managing transportation infrastructure assets such as roads, bridges, and tunnels. By leveraging GIS, transportation agencies can efficiently monitor the condition of these assets, schedule maintenance activities, and allocate resources effectively. This not only extends the lifespan of infrastructure assets but also ensures safety and reduces operational costs, thus driving the adoption of GIS in the transportation sector.
Moreover, the increasing focus on sustainable and eco-friendly transportation solutions is fostering the growth of the GIS in Transportation market. Governments and transportation authorities worldwide are promoting the use of public transit and non-motorized transportation modes to reduce carbon emissions and combat climate change. GIS technology aids in public transit planning and route optimization, ensuring efficient and sustainable transportation systems. Additionally, GIS-based solutions enable the assessment of environmental impacts and support the implementation of green transportation initiatives, further bolstering market growth.
Regionally, North America holds a significant share in the GIS in Transportation market, attributed to the early adoption of advanced technologies and substantial investments in transportation infrastructure. The presence of key market players and the implementation of smart city projects in the United States and Canada further drive the market's growth in this region. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, propelled by rapid urbanization, increasing government initiatives for smart transportation, and the expansion of transportation networks in countries like China and India.
The GIS in Transportation market is segmented by component into software, hardware, and services. The software segment dominates the market, driven by the rising demand for advanced GIS applications that provide comprehensive spatial analysis, mapping, and visualization capabilities. GIS software solutions, such as geographic information systems for traffic management and route planning, are extensively utilized by transportation authorities and urban planners to improve operational efficiency and decision-making processes. The continuous evolution of GIS software, incorporating advanced features like real-time data integration and predictive analytics, further propels market growth.
Hardware components, although smaller in market share compared to software, play a crucial role in the GIS in Transportation market. Hardware components include GPS devices, sensors, and data collection tools, which are essential for gathering accurate spatial data. The increasing deployment of IoT devices and sensors in transportation infrastructure enhances data collection capabilities, thus supporting the effective implementation of GIS solutions. The integration of GIS hardware with software solutions provides a holistic approach to transportation management, driving the adoption of GIS technology in this sector.
The services segment encompasses a wide range of professional services, including consulting, implementation, and maint
https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use
The list of California Transportation Planning Agencies is current as of February, 2014, provided by Division of Transportation Planning, Office of Regional and Interagency Planning. With the exception of Tahoe Regional Planning Agency (TRPA*), all of the RTPA boundaries follow county boundaries, some RTPA are multi-county.Data downloaded in December 2022 from https://gisdata-caltrans.opendata.arcgis.com/datasets/eade3fe45fa046418063d47846dd4c21_0/about.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Over 40,000 road crossings in Maine are maintained by Maine Department of Transportation (MaineDOT) managers, emergency managers, natural resource planners, and municipalities. Resource managers need a way to quickly and comprehensively assess, during the planning stages of potential transportation-related projects, how ecological, hydrologic, and structural characteristics of bridges and culverts and their watersheds could adversely affect project schedules and budgets. Factors that are critical to evaluate and incorporate into overall assessments of project risk include basin, land-use, and climatic characteristics; vulnerability to specific events, such as floods; and complicating factors in the watershed, such as endangered species, evacuation routes, and historical sites. A Python script tool has been built for ArcGIS Pro as an automated screening tool that draws on existing geographic information system (GIS) data layers to identify potential risk factors and quantify risk scores for bridges and culverts. This tool can help resource managers quickly evaluate projects, during early planning, in terms of variables that may adversely affect schedules or budgets.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
GapMaps GIS Data by Azira uses location data on mobile phones sourced by Azira which is collected from smartphone apps when the users have given their permission to track their location. It can shed light on consumer visitation patterns (“where from” and “where to”), frequency of visits, profiles of consumers and much more.
Businesses can utilise GIS data to answer key questions including:
- What is the demographic profile of customers visiting my locations?
- What is my primary catchment? And where within that catchment do most of my customers travel from to reach my locations?
- What points of interest drive customers to my locations (ie. work, shopping, recreation, hotel or education facilities that are in the area) ?
- How far do customers travel to visit my locations?
- Where are the potential gaps in my store network for new developments?
- What is the sales impact on an existing store if a new store is opened nearby?
- Is my marketing strategy targeted to the right audience?
- Where are my competitor's customers coming from?
Mobile Location data provides a range of benefits that make it a valuable GIS Data source for location intelligence services including: - Real-time - Low-cost at high scale - Accurate - Flexible - Non-proprietary - Empirical
Azira have created robust screening methods to evaluate the quality of Mobile location data collected from multiple sources to ensure that their data lake contains only the highest-quality mobile location data.
This includes partnering with trusted location SDK providers that get proper end user consent to track their location when they download an application, can detect device movement/visits and use GPS to determine location co-ordinates.
Data received from partners is put through Azira's data quality algorithm discarding data points that receive a low quality score.
Use cases in Europe will be considered on a case to case basis.
GIS Maps, Transportation Data, and Reports for all modes of travel throughout Massachusetts.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
The Metropolitan Planning Organizations (MPO) dataset was compiled on February 26, 2025 from the Federal Highway Administration (FHWA) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This dataset contains the geographic boundaries of Metropolitan Planning Organizations. It provides users with transportation planning locations, sizes and names and is intended for metropolitan area multimodal transportation planning and programming. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529038
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
{{description}}
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
GIS in Transportation Market Analysis The global GIS in transportation market is anticipated to reach a valuation of $XX million by 2033, expanding at a CAGR of XX% from 2025. The market's growth is primarily driven by the increasing demand for efficient and sustainable transportation systems, the growing adoption of GIS technology for infrastructure planning and management, and the need for real-time data for traffic management and optimization. Additionally, the emergence of smart cities and autonomous vehicles is further fueling market demand. The market is segmented by type (software, services, data) and application (road, rail, others). The software segment holds a significant share due to the high demand for GIS software for planning, design, and analysis. The road application segment dominates the market due to the extensive use of GIS for road network management, traffic analysis, and route optimization. Key players in the market include Autodesk, Bentley Systems, ESRI, Hexagon, and MDA. The North American region is expected to maintain its market dominance, followed by Europe and Asia Pacific. The market is expected to witness continued growth over the forecast period, driven by ongoing technological advancements and the rising need for efficient and data-driven transportation solutions.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Census Transportation Planning Products processed for the TPB Planning Area can be viewed in an informative and interactive application found hereThe CTPP data product based on 2006 – 2010 5-year American Community Survey (ACS) Data is designed to help transportation analysts and planners understand where people are commuting to and from, and how they get there. The information is organized by where workers live, where they work, and by the flow between those places.The Census Transportation Planning Package (CTPP) is a set of special tabulations designed by transportation planners using large sample surveys conducted by the Census Bureau. From 1970 to 2000, the CTPP and its predecessor, UTPP, used data from the decennial census long form. The decennial census long form has now been replaced with a continuous survey called the American Community Survey (ACS). Therefore, the CTPP now uses the ACS sample for the special tabulation.Part 1 Geography – Place of Residence TAZPart 2 Geography – Place of Work TAZ Mean Travel time by Means of TransportationPart 1 - A102106 - Means of Transportation (18) Collapsed versionPart 2 - 202105 Means of Transportation (18) Collapsed versionMode of TransportationPart 1 - B106202C- Mean Travel time (1) by Means of transportation (11) Part 2- B206202C- Mean travel time (1) by Means of transportation (11)Total Vehicles AvailablePart 1 - A111102 - Vehicles available (6)Part 2 - A203102 - Vehicles Available (6)Household IncomePercentage of Household with a household income below $30,000 or above $150,000Part 1- A103101 Household income in the past 12 months (2010$) (26)Part 2- A203101 Household income in the past 12 months (2010$) (26) Household SizePart 1 - A112106 - Household size (5) For more information on the CTPP, visit FHWA's CTPP site or the AASHTO site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The ARC CTP program was established to ensure the transportation infrastructure has a positive impact on strengthening our economy and communities at both the local and regional levels. It accomplishes this by providing financial assistance for counties and their constituent municipalities to develop joint long-range transportation plans. These plans, while focused on local issues and needs, also serve as the foundation for regional planning efforts led by the Atlanta Regional Commission.
{{description}}
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS in Transportation market size was valued at USD 9.5 billion in 2023 and is expected to reach USD 21.8 billion by 2032, growing at a CAGR of 9.5%. This rapid growth is driven by advancements in spatial data analytics and the increasing need for efficient transportation management systems across various sectors. The surge in urbanization, coupled with the rising adoption of smart city initiatives, has propelled the demand for geographic information systems (GIS) in transportation, making it an indispensable tool for urban planners and transportation authorities.
One of the primary growth factors in the GIS in Transportation market is the rising need for traffic management solutions. With increasing vehicle ownership and congested road networks, the implementation of GIS-based traffic management systems has become crucial. These systems help in real-time traffic monitoring, congestion management, and route optimization, thereby enhancing overall transportation efficiency. Additionally, the integration of GIS with Internet of Things (IoT) devices and sensors provides valuable data to city planners and traffic authorities, enabling better decision-making and improved traffic flow.
Another significant driver for the market is the growing emphasis on asset management in the transportation sector. GIS technology plays a pivotal role in tracking and managing transportation infrastructure assets such as roads, bridges, and tunnels. By leveraging GIS, transportation agencies can efficiently monitor the condition of these assets, schedule maintenance activities, and allocate resources effectively. This not only extends the lifespan of infrastructure assets but also ensures safety and reduces operational costs, thus driving the adoption of GIS in the transportation sector.
Moreover, the increasing focus on sustainable and eco-friendly transportation solutions is fostering the growth of the GIS in Transportation market. Governments and transportation authorities worldwide are promoting the use of public transit and non-motorized transportation modes to reduce carbon emissions and combat climate change. GIS technology aids in public transit planning and route optimization, ensuring efficient and sustainable transportation systems. Additionally, GIS-based solutions enable the assessment of environmental impacts and support the implementation of green transportation initiatives, further bolstering market growth.
Regionally, North America holds a significant share in the GIS in Transportation market, attributed to the early adoption of advanced technologies and substantial investments in transportation infrastructure. The presence of key market players and the implementation of smart city projects in the United States and Canada further drive the market's growth in this region. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, propelled by rapid urbanization, increasing government initiatives for smart transportation, and the expansion of transportation networks in countries like China and India.
The GIS in Transportation market is segmented by component into software, hardware, and services. The software segment dominates the market, driven by the rising demand for advanced GIS applications that provide comprehensive spatial analysis, mapping, and visualization capabilities. GIS software solutions, such as geographic information systems for traffic management and route planning, are extensively utilized by transportation authorities and urban planners to improve operational efficiency and decision-making processes. The continuous evolution of GIS software, incorporating advanced features like real-time data integration and predictive analytics, further propels market growth.
Hardware components, although smaller in market share compared to software, play a crucial role in the GIS in Transportation market. Hardware components include GPS devices, sensors, and data collection tools, which are essential for gathering accurate spatial data. The increasing deployment of IoT devices and sensors in transportation infrastructure enhances data collection capabilities, thus supporting the effective implementation of GIS solutions. The integration of GIS hardware with software solutions provides a holistic approach to transportation management, driving the adoption of GIS technology in this sector.
The services segment encompasses a wide range of professional services, including consulting, implementation, and maint