Facebook
TwitterThe Digital Surficial Geologic-GIS Map of the Neches Bottom and Jack Gore Baygall Units and Vicinity, Big Thicket National Preserve, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (necb_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (necb_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bith_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bith_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (necb_surficial_geology_metadata_faq.pdf). Please read the bith_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Lamar University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (necb_surficial_geology_metadata.txt or necb_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of the Jack Woods Butte 7.5' Quadrangle, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jwbu_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jwbu_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jwbu_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (laro_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (laro_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jwbu_surficial_geology_metadata_faq.pdf). Please read the laro_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Bureau of Reclamation. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jwbu_surficial_geology_metadata.txt or jwbu_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterAll available bathymetry and related information for Jack Fish Lake were collected and hard copy maps digitized where necessary. The data were validated against more recent data (Shuttle Radar Topography Mission 'SRTM' imagery and Indian Remote Sensing 'IRS' imagery) and corrected where necessary. The published data set contains the lake bathymetry formatted as an Arc ascii grid. Bathymetric contours and the boundary polygon are available as shapefiles.
Facebook
TwitterAll available bathymetry and related information for Jack Fish Lake were collected and hard copy maps digitized where necessary. The data were validated against more recent data (Shuttle Radar Topography Mission 'SRTM' imagery and Indian Remote Sensing 'IRS' imagery) and corrected where necessary. The published data set contains the lake bathymetry formatted as an Arc ascii grid. Bathymetric contours and the boundary polygon are available as shapefiles.
Facebook
TwitterThe Digital Surficial Geologic Map of the Jack Woods Butte quadrangle, Washington is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Bureau of Reclamation. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (jwbu_metadata.txt; available at http://nrdata.nps.gov/laro/nrdata/geology/gis/jwbu_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (jwbu_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of Lake Roosevelt National Recreation Area.
Facebook
TwitterThe Digital Geologic Map of the Neches Bottom and Jack Gore Baygall Units, Big Thicket National Preserve and Vicinity, Texas is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Big Thicket NPres staff and Texas Bureau of Economic Geology staff. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (necb_metadata.txt; available at http://nrdata.nps.gov/bith/nrdata/geology/gis/necb_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (necb_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 15N. That data is within the area of interest of Big Thicket National Preserve.
Facebook
TwitterA map of voter precincts within Black Jack Fire Protection District.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Location of murder sites of the 'Whitechapel Murders', 1888 - 1891, including the victims of Jack the Ripper. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2010-09-14 and migrated to Edinburgh DataShare on 2017-02-21.
Facebook
TwitterCDFW BIOS GIS Dataset, Contact: Jack Crayon, Description: In the spring of 2003, California Department of Fish and Game (CDFG) personnel began quarterly sampling of Salton Sea fish at fourteen stations around the sea, as the basis of a long term monitoring program. Note: This dataset should be viewed with the 'Quarterly Water Quality Surveys - Salton Sea [ds429]' dataset.
Facebook
TwitterThis analysis uses location data collected on pronghorn antelope that were fitted with GPS collars in Idaho for 2003 – 2020. Individuals using a winter range (as defined as a winter herd), were used for the analysis if their location data was available at the time of the analysis. Each individual’s location dataset is used to estimate winter and summer ranges, and seasonal spring and fall migration using net-squared displacement techniques (Bunnefeld et al. 2011). For pronghorn antelope, the anchor point used to measure distances from occurred near June1 since pronghorn antelope have a higher spatial fidelity to this time of year relative to more transient winter range locations. Fall and spring migration locations are used for the migration route analysis. After individual pronghorn antelope’s spring and fall migration locations are determined, a Brownian Bridge Movement Model (BBMM, Horne et al. 2007) is used to estimate the individuals Utilized Distribution (UD) during the seasonal migrations. Single seasonal migrations are then rescaled to use only the upper 99 percent volume contour. In this process the 99 percent value contour is subtracted from the UD and resulting values less than 0 are rescaled to zero. When an individual had several seasonal migrations, the resulting UDs distributions are combined and averaged to create a single UD of all the seasonal migrations conducted by that individual. Individual UDs are combined for all individuals in the winter herd with available UD information. For migration routes, the following classes were delineated based on the area’s use across the winter herd, used by 1 individual, used by two individuals to 10% of the winter herd, 10 to 20% use of the winter herd, and greater than 20% use by the winter herd. The population level UDs is used to estimate seasonal migration stopover locations. From the combined winter herd UD, the top 10% of recorded values are selected to represent population level stopovers. *** The Big Jack pronghorn antelope seasonal migration analysis is limited by the number individuals such that only 10 to 20%, and greater than 20% migration route use could be classified. It is likely that IDFG will update mapped migration routes as additional spatial and temporal data becomes available. Big Jack Pronghorn Antelope Seasonal Migration StatisticsAnalyzed/Prepared by: Scott BergenJanuary 2021Spatial MetricsAverage length of Migration: 55.4 milesMaximum Migration Length: 138.8 milesMinimum Migration Length: 8.5 milesTotal Migrations Analyzed: 16Total Number of Individuals: 12Total Number Spring Migrations: 4Total Number Fall Migrations: 12Of 16 individual seasonal migrations, 16 used Brownian bridge movement models.Temporal DataExtent of Study: April 7, 2019 – December 20, 2020Spring MigrationFall MigrationStart Date AverageApril 6October 7 Minimum March 3September 9 MaximumApril 24December 1End Date AverageApril 23October 31 MinimumApril 9September 27 MaximumMay 15December 20Duration Average16.8 days24.8 days Minimum12.2 days2.2 days Maximum36.7 days69.2 daysMigration Use Class StatisticsUse ClassAcres 1 individual417,457 Medium (10-20%)199,654 High (>20%)104,461 Stopover41,189
Facebook
TwitterThese data provide an accurate high-resolution shoreline compiled from imagery of Mississippi River, Bohemia to Happy Jack, LA . This vector shoreline data is based on an office interpretation of imagery that may be suitable as a geographic information system (GIS) data layer. This metadata describes information for both the line and point shapefiles. The NGS attribution scheme 'Coastal Carto...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map packages supporting G-cubed paper:Geographic Attribution of Soils using Probabilistic Modeling of GIS data for Forensic Search EffortsBy:
Libby A. Stern, Jodi B. Webb, Debra A. Willard, Christopher E.Bernhardt, David A. Korejwo, Maureen C. Bottrell, Garrett B. McMahon,, Nancy J. McMillan, Jared M. Schuetter, Jack Hietpas
May be accessed with ArcMap
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Location of homes of a subset of Jack the Ripper suspects (those which are found in the Whitechapel area and those for whom an address or location could be found.). GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2010-09-14 and migrated to Edinburgh DataShare on 2017-02-21.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1885 UK parliamentary constituencies for Ireland were re-created in 2017 as part of a conference paper delivered at the Southern Irish Loyalism in Context conference at Maynooth University. The intial map only included the territory of the Irish Free State and was created by Martin Charlton and Jack Kavanagh. The remaining six counties of Ulster were completed by Eoin McLaughlin in 2018-19, the combined result is a GIS map of all the parliamentary constituecies across the island of Ireland for the period 1885-1918. The map is available in both ESRI Shapefile format and as a GeoPackage (GPKG). The methodology for creating the constituencies is outlined in detail below.
A map showing the outlines of the 1855 – 1918 Constituency boundaries can be found on page 401 of Parliamentary Elections in Ireland, 1801-1922 (Dublin, 1978) by Brian Walker. This forms the basis for the creation of a set of digital boundaries which can then be used in a GIS. The general workflow involves allocating an 1885 Constituency identifier to each of the 309 Electoral Divisions present in the boundaries made available for the 2011 Census of Population data release by CSO. The ED boundaries are available in ‘shapefile’ format (a de facto standard for spatial data transfer). Once a Constituency identifier has been given to each ED, the GIS operation known as ‘dissolve’ is used to remove the boundaries between EDs in the same Constituency. To begin with Walker’s map was scanned at 1200 dots per inch in JPEG form. A scanned map cannot be linked to other spatial data without undergoing a process known as georeferencing. The CSO boundaries are available with spatial coordinates in the Irish National Grid system. The goal of georeferencing is to produce a rectified version of the map together with a world file. Rectification refers to the process of recomputing the pixel positions in the scanned map so that they are oriented with the ING coordinate system; the world file contains the extent in both the east-west and north-south directions of each pixel (in metres) and the coordinates of the most north-westerly pixel in the rectified image.
Georeferencing involves the identification of Ground Control Points – these are locations on the scanned map for which the spatial coordinates in ING are known. The Georeferencing option in ArcGIS 10.4 makes this a reasonably pain free task. For this map 36 GCPs were required for a local spline transformation. The Redistribution of Seats Act 1885 provides the legal basis for the constituencies to be used for future elections in England, Wales, Scotland and Ireland. Part III of the Seventh Schedule of the Act defines the Constituencies in terms of Baronies, Parishes (and part Parishes) and Townlands for Ireland. Part III of the Sixth Schedule provides definitions for the Boroughs of Belfast and Dublin.
The CSO boundary collection also includes a shapefile of Barony boundaries. This makes it possible code a barony in two ways: (i) allocated completely to a Division or (ii) split between two Divisions. For the first type, the code is just the division name, and for the second the code includes both (or more) division names. Allocation of these names to the data in the ED shapefile is accomplished by a spatial join operation. Recoding the areas in the split Baronies is done interactively using the GIS software’s editing option. EDs or groups of EDs can be selected on the screen, and the correct Division code updated in the attribute table. There are a handful of cases where an ED is split between divisions, so a simple ‘majority’ rule was used for the allocation. As the maps are to be used at mainly for displaying data at the national level, a misallocation is unlikely to be noticed. The final set of boundaries was created using the dissolve operation mentioned earlier. There were a dozen ED that had initially escaped being allocated a code, but these were quickly updated. Similarly, a few of the EDs in the split divisions had been overlooked; again updating was painless. This meant that the dissolve had to be run a few more times before all the errors have been corrected.
For the Northern Ireland districts, a slightly different methodology was deployed which involved linking parishes and townlands along side baronies, using open data sources from the OSM Townlands.ie project and OpenData NI.
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Practical exercise survey at the training venue Manples Area, Port Vila 2024
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
This submission is from a master's group thesis project at The Bren School of Environmental Science & Management at the University of California, Santa Barbara, and contains the final written report and associated datasets. The graduate student researchers who completed this project include: Meghan Fletcher, Alyssa Kibbe, Grace Kumaishi, Anna Talken, and Nikole Vannest.
The California landscape has been fragmented by urban development, infrastructure, and agriculture. Maintaining connectivity between areas of wildlife habitat is important for the viability of many long-ranging species, such as the mountain lion (Puma concolor). Mountain lion populations are highly susceptible to habitat fragmentation, and face reduced access to resources and decreased genetic diversity. This study explores the habitat connectivity between the Jack and Laura Dangermond Preserve (JLDP), a 24,460 acre protected property owned by The Nature Conservancy (TNC), and neighboring protected areas to identify potential pathways of movement for mountain lions along the Central and Southern California coast. In this project, we: 1) determine regional connectivity and least cost paths between core habitats by modeling suitable mountain lion habitat, 2) estimate mountain lion habitat use and movement on JLDP by performing a site-level suitability and corridor analysis and 3) create a short film focused on highlighting our research, the role that JLDP plays in conservation, and the importance of habitat connectivity. The results of our project show that JLDP contains suitable habitat for mountain lions and may play a positive role in coastal connectivity. When considering the connectivity between JLDP and other regional protected areas, our analyses indicate that urbanized coastal regions act as barriers to mountain lions and contain pinch points that channelize movement. These results can guide TNC in developing management strategies for protecting mountain lions on JLDP and in the surrounding region.
Analyses were conducted using ArcGIS, Google Earth Engine, MaxENT, Circuitscape, and Omniscape. The project began in April 2021 and ended in June 2022. Methods Data was collected from open source data acquired using Google Earth Engine and Esri ArcOnline from the following sources: NASA, USGS, JPL-CalTech, Conservation Science Partners, CalFish, US Census and CalFire. It was processed using Esri ArcMap, ArcGIS Pro, Maxent, Omniscape via Jupyter Notebook and the Linkage Mapper Toolkit within ArcMap.
Facebook
TwitterA map of voter precincts within City of Black Jack Ward 2.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Public houses associated with Jack the Ripper i.e. where his victims drank. Derived from data found in www.casebook.org. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2010-07-06 and migrated to Edinburgh DataShare on 2017-02-21.
Facebook
Twitterhttp://open.alberta.ca/licencehttp://open.alberta.ca/licence
This GIS dataset depicts the surficial geology of the Little Smoky area (NTS 83K/NW) (GIS data, polygon features). The data were created in geodatabase format and output for public distribution in shapefile format. These data comprise the polygon features of Alberta Geological Survey Map 564, Surficial Geology of the Little Smoky Area (NTS 83K/NW).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset description: This repository contains data pertaining to the manuscript "Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system." submitted to Journal of Maps. NOAH-H Mosaics: Mawrth_Vallis_NOAHH_Mosaic_DC_IG_25cm4bit_20230121_reclass.zip This folder contain mosaics of terrain classifications for Mawrth Vallis, Mars, made by the Novelty or Anomaly Hunter - HiRISE (NOAH-H) deep learning convolutional neural network developed for the European Space Agency (ESA) by SCISYS Ltd. In coordination with the Open University Planetary Environments Group. These folders contain the NOAH-H mosaics, as well as ancillary files needed to display the NOAH-H products in geographic information software (GIS). Included are two large raster datasets, containing the NOAH-H classification for the entire study area. One uses the 14 descriptive classes of the terrain, and the other with the five interpretative groups (Barrett et al., 2022). · Mawrth_Vallis_NOAHH_Mosaic_DC_25cm4bit_20230121_reclass.tif Contains the full 14 class “Descriptive Classes” (DC) dataset, reclassified so that pixel values reflect the original NOAH-H ontology, and not the priority rankings described in Wright et al., (2022) and Barrett et al., (2022b). It is accompanied by all auxiliary files required to view the data in GIS. · Mawrth_Vallis_NOAHH_Mosaic_IG_25cm4bit_20230121_reclass.tif Contains the 5 class “Interpretive Groups” (IG) dataset, reclassified so that pixel values reflect the original NOAH-H ontology, and not the priority rankings described in Wright et al., (2022) and Barrett et al., (2022b). It is accompanied by all auxiliary files required to view the data in GIS. Symbology layer files: NOAH-H_Symbology.zip This folder contains GIS layer file and colour map files for both the Descriptive Classes (DC) and interpretive Groups (IG) versions of the classification. These can be applied to the data using the symbology options in GIS. Georeferencing Control points: Mawrth_Vallis_Final_Control_Points.zip This file contains the control points used to georeferenced the 26 individual HiRISE images which make up the mosaic. These allow publicly available HiRISE images to be aligned to the terrain in Mawrth Vallis, and thus the NOAH-H Mosaic. Twenty-six 25 cm/pixel HiRISE images of Mawrth Vallis were used as input for NOAH-H. These are:
PSP_002140_2025_RED
PSP_002074_2025_RED
ESP_057351_2020_RED
ESP_053909_2025_RED
ESP_053698_2025_RED
ESP_052274_2025_RED
ESP_051931_2025_RED
ESP_051351_2025_RED
ESP_051219_2030_RED
ESP_050217_2025_RED
ESP_046960_2025_RED
ESP_046670_2025_RED
ESP_046525_2025_RED
ESP_046459_2025_RED
ESP_046314_2025_RED
ESP_045536_2025_RED
ESP_045114_2025_RED
ESP_044903_2025_RED
ESP_043782_2025_RED
ESP_043637_2025_RED
ESP_038758_2025_RED
ESP_037795_2025_RED
ESP_037294_2025_RED
ESP_036872_2025_RED
ESP_036582_2025_RED
ESP_035804_2025_RED NOAH-H produced corresponding 25 cm/pixel rasters where each pixel is assigned a terrain class based on the corresponding pixels in the input HiRISE image. To mosaic the NOAH-H rasters together, first the input HiRISE images were georeferenced to the HRSC basemap (HMC_11E10_co5) tile, using CTX images as an intermediate step. High order (spline, in ArcGIS Pro 3.0) transformations were used to make the HiRISE images georeference closely onto the target layers. Once the HiRISE images were georeferenced, the same control points and transformations were applied to the corresponding NOAH-H rasters. To mosaic the georeferenced NOAH-H rasters the pixel values for the classes needed to be changed so that more confidently identified, and more dangerous, classes made it into the mosaic (see dataset manuscript for details. To produce a HiRISE layer which fits the NOAH-H classification, download one of the listed HiRISE images from https://www.uahirise.org/, Select the corresponding control point file from this archive and apply a spline transformation through the GIS georeferencing toolbar. Manually Mapped Aeolian Bedforms: Mawrth_Manual_TARs.zip The manually mapped data was produced by Fawdon, independently of the NOAH-H project, as an assessment of “Aeolian Hazard” at Mawrth Vallis. This was done to inform the ExoMars landing site selection process. This file contains two GIS shape files, containing the manually mapped bedforms for both the entire mapping area, and the HiRISE image ESP_046459_2025_RED where the two datasets were compared on a pixel scale. The full manual map is offset slightly from the NOAH-H, since it was digitised from bespoke HiRISE orthomosaics, rather than from the publicly available HiRISE Red band images. It is suitable for comparison to the NOAH-H data with 100m-1km aggregation as in figure 8 of the associated paper. It is not suitable for pixel scale comparison. The map of ESP_046459_2025_RED was manually georeferenced to the NOAH-H mosaic, allowing for direct pixel to pixel comparisons, as presented in figure 6 of the associated paper. Two GIS shape files are included: · Mawrth_Manual_TARs_ESP_046459_2025.shp · Mawrth_Manual_TARs_all.shp Containing the high fidelity data for ESP_046459_2025, and the medium fidelity data for the entire area respectively. The are accompanied by ancillary files needed to view them in GIS. Gridded Density Statistics This dataset contains gridded density maps of Transverse Aeolian Ridges and Boulders, as classified by the Novelty or Anomaly Hunter – HiRISE (NOAH-H). The area covered is the runner up candidate ExoMars landing site in Mawrth Vallis, Mars. These are the data shown in figures; 7, 8, and S1. Files are presented for every classified ripple and boulder class, as well as for thematic groups. These are presented as .shp GIS shapefiles, along with all auxiliary files required to view them in GIS. Gridded Density stats are available in two zip folders, one for NOAH-H predicted density, and one for manually mapped density. NOAH-H Predicted Density: Mawrth_NOAHH_1km_Grid_TAR_Boulder_Density.zip Individual classes are found in the files: · Mawrth_NOAHH_1km_Grid_8TARs.shp · Mawrth_NOAHH_1km_Grid_9TARs.shp · Mawrth_NOAHH_1km_Grid_11TARs.shp · Mawrth_NOAHH_1km_Grid_12TARs.shp · Mawrth_NOAHH_1km_Grid_13TARs.shp · Mawrth_NOAHH_1km_Grid_Boulders.shp Where the text following Grid denotes the NOAH-H classes represented, and the landform classified. E.g. 8TARs = NOAH-H TAR class 8. The following thematic groups are also included: · Mawrth_NOAHH_1km_Grid_8_11continuousTARs.shp · Mawrth_NOAHH_1km_Grid_12_13discontinuousTARs · Mawrth_NOAHH_1km_Grid_8_10largeTARs.shp · Mawrth_NOAHH_1km_Grid_11_13smallTARs.shp · Mawrth_NOAHH_1km_Grid_8_13AllTARs.shp When the numbers denote the range of NOAH-H classes which were aggregated to produce the map, followed by a description of the thematic group: “continuous”, “discontinuous”, “large”, “small”, “all”. Manually Mapped Density Plots: Mawrth_Manual_1km_Grid.zip These GIS shapefiles have the same format as the NOAH-H classified ones. Three datasets are presented for all TARs (“_allTARs”), Continuous TARs (“_con”) and Discontinuous TARs (“_dis”) · Mawrth_Manual_1km_Grid_AllTARs.shp · Mawrth_Manual_1km_Grid_Con.shp · Mawrth_Manual_1km_Grid_Dis.shp Related public datasets: The HiRISE images discussed in this work are publicly available from https://www.uahirise.org/. and are credited to NASA/JPL/University of Arizona. HRSC images are credited to the European Space Agency; Mars Express mission team, German Aerospace Center (DLR), and the Freie Universität Berlin (FUB). They are available at the ESA Planetary Science Archive (PSA) https://www.cosmos.esa.int/web/psa/mars-express and are used under the Creative Commons CC BY-SA 3.0 IGO licence. SPATIAL DATA COORDINATE SYSTEM INFORMATION All NOAH-H files and derivative density plots have the same projected coordinate system: “Equirectangular Mars” - Projection: Plate Carree - Sphere radius: 3393833.2607584 m SOFTWARE INFORMATION All GIS workflows (georeferencing, mosaicking) were conducted in ArcGIS Pro 3.0. NOAH-H is a deep learning semantic segmentation software developed by SciSys Ltd for the European Space Agency to aid preparation for the ExoMars rover mission.
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of the Neches Bottom and Jack Gore Baygall Units and Vicinity, Big Thicket National Preserve, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (necb_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (necb_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bith_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bith_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (necb_surficial_geology_metadata_faq.pdf). Please read the bith_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Lamar University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (necb_surficial_geology_metadata.txt or necb_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).