100+ datasets found
  1. m

    Land Cover-Land Use (2016) Map Service

    • gis.data.mass.gov
    • hub.arcgis.com
    Updated May 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2019). Land Cover-Land Use (2016) Map Service [Dataset]. https://gis.data.mass.gov/datasets/land-cover-land-use-2016-map-service
    Explore at:
    Dataset updated
    May 24, 2019
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    The statewide dataset contains a combination of land cover mapping from 2016 aerial imagery and land use derived from standardized assessor parcel information for Massachusetts. The data layer is the result of a cooperative project between MassGIS and the National Oceanic and Atmospheric Administration’s (NOAA) Office of Coastal Management (OCM). Funding was provided by the Mass. Executive Office of Energy and Environmental Affairs.

    This land cover/land use dataset does not conform to the classification schemes or polygon delineation of previous land use data from MassGIS (1951-1999; 2005).In this map service layer hosted at MassGIS' ArcGIS Server, all impervious polygons are symbolized by their generalized use code; all non-impervious land cover polygons are symbolized by their land cover category. The idea behind this method is to use both cover and use codes to provide a truer picture of how land is being used: parcel use codes may indicate allowed or assessed, not actual use; land cover alone (especially impervious) does not indicate actual use.

    See the full datalayer description for more details.This map service is best displayed at large (zoomed in) scales. Also available are a Feature Service and a Tile Service (cache). The tile cache will display very quickly in in ArcGIS Online, ArcGIS Desktop, and other applications that can consume tile services.

  2. a

    GIS Parcel Mapping Procedure

    • hub.arcgis.com
    Updated Jul 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Douglas County MN Survey & GIS (2017). GIS Parcel Mapping Procedure [Dataset]. https://hub.arcgis.com/documents/2f9fd4f8fe4f4151ba722b61636992bf
    Explore at:
    Dataset updated
    Jul 21, 2017
    Dataset authored and provided by
    Douglas County MN Survey & GIS
    Description

    DOUGLAS COUNTY SURVEY/GISGIS PARCEL MAPPING GUIDELINES FOR PARCEL DISCREPANCIESIt is the intent of the Douglas County GIS Parcel Mapping to accurately identify the areas of land parcels to be valued and taxed 1. Discrepancies in areas• The Auditor/Assessor (tax) acreage areas started with the original US General Land Office (GLO) township plat maps created from the Public Land Survey (PLS) that was done between 1858 and 1871. The recovery of the PLS corners and the accurate location of these corners with GPS obtained coordinates has allowed for accurate section subdivisions, which results in accurate areas for parcels based on legal descriptions, which may be significantly different than the original areas. (See Example 2)• Any parcel bordering a meandered lake and/or a water boundary will likely have a disparity of area between the Auditor/Assessor acreages and the GIS acreages because of the inaccuracy of the original GLO meander lines from which the original areas were determined. Water lines are not able to be drafted to the same accuracy as the normal parcel lines. The water lines are usually just sketched on a survey and their dimensions are not generally given on a land record. The water boundaries of our GIS parcels are located from aerial photography. This is a subjective determination based on the interpretation by the Survey/GIS technician of what is water. Some lakes fluctuate significantly and the areas of all parcels bordering water are subject to constant change. In these cases the ordinary high water line (OHW) is attempted to be identified. Use of 2-foot contours will be made, if available. (See Example 1)• Some land records do not accurately report the area described in the land description and the description area is ignored. (See Example 3)• The parcel mapping has made every attempt to map the parcels based on available survey information as surveyed and located on the ground. This may conflict with some record legal descriptions.Solutions• If an actual survey by a licensed Land Surveyor is available, it will be utilized for the tax acreage.• If the Auditor/Assessor finds a discrepancy between the tax and GIS areas, they will request a review by the County Survey/GIS department.• As a starting guideline, the County Survey/GIS department will identify all parcels that differ in tax area versus GIS parcel area of 10 % or more and a difference of at least 5 acres. (This could be expanded later after the initial review.)• Each of these identified parcels will be reviewed individually by the County Survey/GIS department to determine the reason for the discrepancy and a recommendation will be made by the County Survey/GIS department to the Auditor/Assessor if the change should be made or not.• If a change is to be made to the tax area, a letter will be sent to the taxpayer informing them that their area will be changed during the next tax cycle, which could affect their property valuation. This letter will originate from the Auditor/Assessor with explanation from the County Survey/GIS department. 2. Gaps and Overlaps• Land descriptions for adjoining parcels sometimes overlap or leave a gap between them.o In these instances the Survey/GIS technician has to make a decision where to place this boundary. A number of circumstances are reviewed to facilitate this decision as these dilemmas are usually decided on a case by case basis. All effort will be made to not leave a gap, but sometimes this is not possible and the gap will be shown with “unknown” ownership. (Note: The County does not have the authority to change boundaries!)o Some of the circumstances reviewed are: Which parcel had the initial legal description? Does the physical occupation of the parcel line as shown on the air photo more closely fit one of the described parcels? Interpretation of the intent of the legal description. Is the legal description surveyable?Note: These overlaps will be shown on the GIS map with a dashed “survey line” and accompanying text for the line not used for the parcel boundary. 3. Parcel lines that do not match location of buildings Structures on parcels do not always lie within the boundaries of the parcel. This may be a circumstance of building without the benefit of a survey or of misinterpreting these boundaries. The parcel lines should be shown accurately as surveyed and/or described regardless of the location of structures on the ground. NOTE: The GIS mapping is not a survey, but is an interpretation of parcel boundaries predicated upon resources available to the County Survey/GIS department.Gary Stevenson Page 1 7/21/2017Example 1Example 2A Example 2B Example 3

  3. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    United States, Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  4. n

    Bhutan Land use planning GIS Database

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Bhutan Land use planning GIS Database [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214155400-SCIOPS.html
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    Land cover has been interpreted from Satellite images and field checked, other information has been digitized from topographic maps

     Members informations:
     Attached Vector(s):
      MemberID: 1
     Vector Name: Land use
     Source Map Name: SPOT Pan
     Source Map Scale: 50000
     Source Map Date: 1989/90
     Projection: Polyconic on Modified Everest Ellipsoid
     Feature_type: polygon
     Vector 
     Land use maps, interpreted from SPOT panchromatic imagery and field
     checked (18 classes)
    
     Members informations:
     Attached Vector(s):
      MemberID: 2
     Vector Name: Administrative boundaries
     Source Map Name: topo sheets
     Source Map Scale: 50000
     Source Map Date: ?
     Feature_type: polygon
     Vector 
     Dzongkhags (Districts) and Gewogs
    
     Members informations:
     Attached Vector(s):
      MemberID: 3
     Vector Name: Roads
     Source Map Name: topo sheets
     Source Map Scale: 50000
     Source Map Date: ?
     Feature_type: lines
     Vector 
     Road network
    
     Attached Report(s)
     Member ID: 4
     Report Name: Atlas of Bhutan
     Report Authors: Land use planning section
     Report Publisher: Ministry of Agriculture, Thimpu
     Report Date: 1997-06-01
     Report 
     Land cover (1:250000) and area statistics of 20 Dzongkhags
    
  5. a

    Sentinel-2 10m Land Use Land Cover Time Series

    • wfp-demographic-analysis-usfca.hub.arcgis.com
    Updated Oct 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Analysis Lab (GsAL) at USF (2024). Sentinel-2 10m Land Use Land Cover Time Series [Dataset]. https://wfp-demographic-analysis-usfca.hub.arcgis.com/content/42945cf091f84444ab43c9850959edc3
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset authored and provided by
    Geospatial Analysis Lab (GsAL) at USF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  6. Statewide Crop Mapping

    • data.cnra.ca.gov
    data, gdb, html +3
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statewide Crop Mapping [Dataset]. https://data.cnra.ca.gov/dataset/statewide-crop-mapping
    Explore at:
    rest service, html, zip(88308707), gdb(76631083), gdb(86886429), zip(98690638), data, zip(159870566), shp(126548912), shp(126828193), shp(107610538), zip(189880202), gdb(86655350), zip(140021333), zip(94630663), zip(144060723), gdb(85891531), zip(169400976), zip(179113742)Available download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.

    Thank you for your interest in DWR land use datasets.

    The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.

    Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.

    For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.

    For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.

    For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.

    Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.

  7. k

    Preparation of GIS Maps for land use and Forest cover assessment of PFI...

    • opendata.kp.gov.pk
    Updated Mar 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Preparation of GIS Maps for land use and Forest cover assessment of PFI Information Year 2021 [Dataset]. https://opendata.kp.gov.pk/dataset/preparation-of-gis-maps-for-land-use-and-forest-cover-assessment-of-pfi-information-year-2021
    Explore at:
    Dataset updated
    Mar 16, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Preparation of GIS Maps for land use and Forest cover assessment of PFI Information Year 2021

  8. d

    Allegheny County Land Cover Areas

    • catalog.data.gov
    • data.wprdc.org
    • +5more
    Updated May 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2023). Allegheny County Land Cover Areas [Dataset]. https://catalog.data.gov/dataset/allegheny-county-land-cover-areas
    Explore at:
    Dataset updated
    May 14, 2023
    Dataset provided by
    Allegheny County
    Area covered
    Allegheny County
    Description

    The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal (http://www.wprdc.org), this dataset is harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the “Go to resource” option) to the right of the “ArcGIS Open Dataset” text below. Category: Geography Organization: Allegheny County Department: Geographic Information Systems Group; Department of Administrative Services Temporal Coverage: 1994 Data Notes: Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot Development Notes: The dataset was created by Chester Environmental through combined image processing and GIS analysis of Landsat TM imagery of October 2, 1992, existing aerial photography, hardcopy and digital mapping sources and Census Bureau demographic data. The original dataset was created in 1993, then updated by Chester in 1994. Other: none Related Document(s): Data Dictionary (https://docs.google.com/spreadsheets/d/1VfUflfki42mpLSkr1R-up_OXGD3mHnv8tqeXf6XS9O0/edit?usp=sharing) Frequency - Data Change: As needed Frequency - Publishing: As needed Data Steward Name: Eli Thomas Data Steward Email: gishelp@alleghenycounty.us

  9. a

    Land Cover 1992-2020

    • hub.arcgis.com
    • cacgeoportal.com
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://hub.arcgis.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  10. Statewide Land Use Land Cover

    • geodata.dep.state.fl.us
    • mapdirect-fdep.opendata.arcgis.com
    • +1more
    Updated Dec 1, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2012). Statewide Land Use Land Cover [Dataset]. https://geodata.dep.state.fl.us/datasets/statewide-land-use-land-cover
    Explore at:
    Dataset updated
    Dec 1, 2012
    Dataset authored and provided by
    Florida Department of Environmental Protectionhttp://www.floridadep.gov/
    Area covered
    Description

    This dataset (2017-2023) is a compilation of the Land Use/Land Cover datasets created by the 5 Water Management Districts in Florida based on imagery -- Northwest Florida Water Management District (NWFWMD) 2022.Bay (1/4/2022 – 3/24/2022), Calhoun (1/7/2022 – 1/18/2022),Escambia (11/13/2021 – 1/15/2021), Franklin (1/7/2022 – 1/18/2022), Gadsden (1/7/2022 – 1/16/2022), Gulf (1/7/2022 – 1/14/2022), Holmes (1/8/2022 – 1/18/2022), Jackson (1/7/2022 – 1/14/2022), Jefferson (1/7/2022 – 2/16/2022), Leon (February 2022), Liberty (1/7/2022 – 1/16/2022), Okaloosa (10/31/2021 – 2/13/2022), Santa Rosa (10/26/2021-1/17/2022), Wakulla (1/7/2022 – 1/14/2022), Walton (1/7/2022-1/14/2022), Washington (1/13/2022 – 1/19/2022).Suwannee River Water Management District (SRWMD) 2019-2023.(Alachua 20200102-20200106), (Baker 20200108-20200126), (Bradford 20181020-20190128), (Columbia 20181213-20190106), (Gilchrist 20181020-20190128), (Levy 20181020-20190128), (Suwannee 20181217-20190116), (Union 20181020-20190128).(Dixie 12/17/2021-01/29/2022), (Hamilton 12/17/2021-01/29/2022), (Jefferson 01/07/2022-02/16/2022), (Lafayette 12/17/2021-01/29/2022), (Madison 12/17/2021-01/29/2022), (Taylor 12/17/2021-01/29/2022.Southwest Florida Water Management District (SWFWMD) 2020. South Florida Water Management District (SFWMD) 2021-2023.St. John's River Water Management District (SJRWMD) 2020.Year Flight Season Counties:2020 (Dec. 2019 - Mar 2020) Alachua, Baker, Clay, Flagler, Lake, Marion, Osceola, Polk, Putnam.2021 (Dec. 2020 - Mar 2021) Brevard, Indian River, Nassau, Okeechobee, Orange, St. Johns, Seminole, Volusia. 2022 (Dec. 2021 - Mar 2022) Bradford, Union. Codes are derived from the Florida Land Use, Cover, and Forms Classification System (FLUCCS-DOT 1999) but may have been altered to accommodate region differences by each of the Water Management Districts.

  11. m

    Massachusetts Interactive Property Map

    • gis.data.mass.gov
    • hub.arcgis.com
    Updated Sep 30, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2014). Massachusetts Interactive Property Map [Dataset]. https://gis.data.mass.gov/datasets/massachusetts-interactive-property-map
    Explore at:
    Dataset updated
    Sep 30, 2014
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Description

    To access parcel information:Enter an address or zoom in by using the +/- tools or your mouse scroll wheel. Parcels will draw when zoomed in.Click on a parcel to display a popup with information about that parcel.Click the "Basemap" button to display background aerial imagery.From the "Layers" button you can turn map features on and off.Complete Help (PDF)Parcel Legend:Full Map LegendAbout this ViewerThis viewer displays land property boundaries from assessor parcel maps across Massachusetts. Each parcel is linked to selected descriptive information from assessor databases. Data for all 351 cities and towns are the standardized "Level 3" tax parcels served by MassGIS. More details ...Read about and download parcel dataUpdatesV 1.1: Added 'Layers' tab. (2018)V 1.2: Reformatted popup to use HTML table for columns and made address larger. (Jan 2019)V 1.3: Added 'Download Parcel Data by City/Town' option to list of layers. This box is checked off by default but when activated a user can identify anywhere and download data for that entire city/town, except Boston. (March 14, 2019)V 1.4: Data for Boston is included in the "Level 3" standardized parcels layer. (August 10, 2020)V 1.4 MassGIS, EOTSS 2021

  12. a

    Satellite Imagery and Land Cover - Map Viewer

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • maps.cbf.org
    Updated Apr 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Bay Foundation (2022). Satellite Imagery and Land Cover - Map Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/5f961dfed0c548ae82df390ec1c27c15
    Explore at:
    Dataset updated
    Apr 1, 2022
    Dataset authored and provided by
    Chesapeake Bay Foundation
    Area covered
    Description

    This map was created to be used in the CBF website map gallery as updated satellite imagery content for the Chesapeake Bay watershed.This map includes the Chesapeake Bay watershed boundary, state boundaries that intersect the watershed boundary, and NLCD 2019 Land Cover data as well as a imagery background. This will be shared as a web application on the CBF website within the map gallery subpage.

  13. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    • pacificgeoportal.com
    • +3more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://gis-for-secondary-schools-schools-be.hub.arcgis.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  14. d

    U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2.

    • datadiscoverystudio.org
    • data.globalchange.gov
    • +3more
    Updated May 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/5943529b1b9043a397058fffe2a2440a/html
    Explore at:
    Dataset updated
    May 21, 2018
    Description

    description: This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer; abstract: This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer

  15. d

    Loudoun Land Use Existing Parcels

    • catalog.data.gov
    • data.virginia.gov
    • +9more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County GIS (2024). Loudoun Land Use Existing Parcels [Dataset]. https://catalog.data.gov/dataset/loudoun-land-use-existing-parcels-6643c
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    Loudoun County GIS
    Area covered
    Loudoun County
    Description

    More MetadataThis layer identifies existing parcels within Loudoun County and their current Land Use. The existing structures data source is Loudoun County VA, Office of Mapping & Geographic Information's (OMAGI) addressable structure layer for all of Loudoun County, VA. All residential uses, which includes Single Family, Multi-Family and Group Quarter uses, are specified and existing Commercial structures (Offices, Retail, Medical Offices, Data Centers, etc.) are combined into a single Non-Residential use. The other uses specifically identified are HOA (Home owner Association owned parcels), Miscellaneous (no employment generating), and Multi-Use (2 different uses), and Vacant (parcel with no land use).

  16. e

    Ohio Public Land Survey (PLS) Witness Tree GIS Shapefile

    • portal.edirepository.org
    • search.dataone.org
    zip
    Updated 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jillian Deines; Jason McLachlan; Angharad Hamlin; Daniel Williams; Jody Peters (2015). Ohio Public Land Survey (PLS) Witness Tree GIS Shapefile [Dataset]. http://doi.org/10.6073/pasta/6c8ccb2a4e385f757abbb276987833d7
    Explore at:
    zipAvailable download formats
    Dataset updated
    2015
    Dataset provided by
    EDI
    Authors
    Jillian Deines; Jason McLachlan; Angharad Hamlin; Daniel Williams; Jody Peters
    Time period covered
    1786 - 1865
    Area covered
    Description

    The United States Public Land Survey (PLS) divided land into one square mile units, termed sections. Surveyors used trees to locate section corners and other locations of interest (witness trees). As a result, a systematic ecological dataset was produced with regular sampling over a large region of the United States, beginning in Ohio in 1786 and continuing westward.
    We digitized and georeferenced archival hand drawn maps of these witness trees for 27 counties in Ohio. This dataset consists of a GIS point shapefile with 11,925 points located at section corners, recording 26,028 trees (up to four trees could be recorded at each corner). We retain species names given on each archival map key, resulting in 70 unique species common names. PLS records were obtained from hand-drawn archival maps of original witness trees produced by researchers at The Ohio State University in the 1960’s. Scans of these maps are archived as “The Edgar Nelson Transeau Ohio Vegetation Survey” at The Ohio State University: http://hdl.handle.net/1811/64106.
    The 27 counties are: Adams, Allen, Auglaize, Belmont, Brown, Darke, Defiance, Gallia, Guernsey, Hancock, Lawrence, Lucas, Mercer, Miami, Monroe, Montgomery, Morgan, Noble, Ottawa, Paulding, Pike, Putnam, Scioto, Seneca, Shelby, Williams, Wyandot. Coordinate Reference System: North American Datum 1983 (NAD83). This material is based upon work supported by the National Science Foundation under grants #DEB-1241874, 1241868, 1241870, 1241851, 1241891, 1241846, 1241856, 1241930.

  17. a

    Florida Cooperative Land Cover (Vector)

    • hub.arcgis.com
    • opendata.rcmrd.org
    • +2more
    Updated Nov 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Fish and Wildlife Conservation Commission (2022). Florida Cooperative Land Cover (Vector) [Dataset]. https://hub.arcgis.com/documents/f7bb9259f6c7462d8de73b90169eaf43
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset authored and provided by
    Florida Fish and Wildlife Conservation Commission
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The Cooperative Land Cover Map is a project to develop an improved statewide land cover map from existing sources and expert review of aerial photography. The project is directly tied to a goal of Florida's State Wildlife Action Plan (SWAP) to represent Florida's diverse habitats in a spatially-explicit manner. The Cooperative Land Cover Map integrates 3 primary data types: 1) 6 million acres are derived from local or site-specific data sources, primarily on existing conservation lands. Most of these sources have a ground-truth or local knowledge component. We collected land cover and vegetation data from 37 existing sources. Each dataset was evaluated for consistency and quality and assigned a confidence category that determined how it was integrated into the final land cover map. 2) 1.4 million acres are derived from areas that FNAI ecologists reviewed with high resolution aerial photography. These areas were reviewed because other data indicated some potential for the presence of a focal community: scrub, scrubby flatwoods, sandhill, dry prairie, pine rockland, rockland hammock, upland pine or mesic flatwoods. 3) 3.2 million acres are represented by Florida Land Use Land Cover data from the FL Department of Environmental Protection and Water Management Districts (FLUCCS). The Cooperative Land Cover Map integrates data from the following years: NWFWMD: 2006 - 07 SRWMD: 2005 - 08 SJRWMD: 2004 SFWMD: 2004 SWFWMD: 2008 All data were crosswalked into the Florida Land Cover Classification System. This project was funded by a grant from FWC/Florida's Wildlife Legacy Initiative (Project 08009) to Florida Natural Areas Inventory. The current dataset is provided in 10m raster grid format.Changes from Version 1.1 to Version 2.3:CLC v2.3 includes updated Florida Land Use Land Cover for four water management districts as described above: NWFWMD, SJRWMD, SFWMD, SWFWMDCLC v2.3 incorporates major revisions to natural coastal land cover and natural communities potentially affected by sea level rise. These revisions were undertaken by FNAI as part of two projects: Re-evaluating Florida's Ecological Conservation Priorities in the Face of Sea Level Rise (funded by the Yale Mapping Framework for Biodiversity Conservation and Climate Adaptation) and Predicting and Mitigating the Effects of Sea-Level Rise and Land Use Changes on Imperiled Species and Natural communities in Florida (funded by an FWC State Wildlife Grant and The Kresge Foundation). FNAI also opportunistically revised natural communities as needed in the course of species habitat mapping work funded by the Florida Department of Environmental Protection. CLC v2.3 also includes several new site specific data sources: New or revised FNAI natural community maps for 13 conservation lands and 9 Florida Forever proposals; new Florida Park Service maps for 10 parks; Sarasota County Preserves Habitat Maps (with FNAI review); Sarasota County HCP Florida Scrub-Jay Habitat (with FNAI Review); Southwest Florida Scrub Working Group scrub polygons. Several corrections to the crosswalk of FLUCCS to FLCS were made, including review and reclassification of interior sand beaches that were originally crosswalked to beach dune, and reclassification of upland hardwood forest south of Lake Okeechobee to mesic hammock. Representation of state waters was expanded to include the NOAA Submerged Lands Act data for Florida.Changes from Version 2.3 to 3.0: All land classes underwent revisions to correct boundaries, mislabeled classes, and hard edges between classes. Vector data was compared against high resolution Digital Ortho Quarter Quads (DOQQ) and Google Earth imagery. Individual land cover classes were converted to .KML format for use in Google Earth. Errors identified through visual review were manually corrected. Statewide medium resolution (spatial resolution of 10 m) SPOT 5 images were available for remote sensing classification with the following spectral bands: near infrared, red, green and short wave infrared. The acquisition dates of SPOT images ranged between October, 2005 and October, 2010. Remote sensing classification was performed in Idrisi Taiga and ERDAS Imagine. Supervised and unsupervised classifications of each SPOT image were performed with the corrected polygon data as a guide. Further visual inspections of classified areas were conducted for consistency, errors, and edge matching between image footprints. CLC v3.0 now includes state wide Florida NAVTEQ transportation data. CLC v3.0 incorporates extensive revisions to scrub, scrubby flatwoods, mesic flatwoods, and upland pine classes. An additional class, scrub mangrove – 5252, was added to the crosswalk. Mangrove swamp was reviewed and reclassified to include areas of scrub mangrove. CLC v3.0 also includes additional revisions to sand beach, riverine sand bar, and beach dune previously misclassified as high intensity urban or extractive. CLC v3.0 excludes the Dry Tortugas and does not include some of the small keys between Key West and Marquesas.Changes from Version 3.0 to Version 3.1: CLC v3.1 includes several new site specific data sources: Revised FNAI natural community maps for 31 WMAs, and 6 Florida Forever areas or proposals. This data was either extracted from v2.3, or from more recent mapping efforts. Domains have been removed from the attribute table, and a class name field has been added for SITE and STATE level classes. The Dry Tortugas have been reincorporated. The geographic extent has been revised for the Coastal Upland and Dry Prairie classes. Rural Open and the Extractive classes underwent a more thorough reviewChanges from Version 3.1 to Version 3.2:CLC v3.2 includes several new site specific data sources: Revised FNAI natural community maps for 43 Florida Park Service lands, and 9 Florida Forever areas or proposals. This data is from 2014 - 2016 mapping efforts. SITE level class review: Wet Coniferous plantation (2450) from v2.3 has been included in v3.2. Non-Vegetated Wetland (2300), Urban Open Land (18211), Cropland/Pasture (18331), and High Pine and Scrub (1200) have undergone thorough review and reclassification where appropriate. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.2.5 to Version 3.3: The CLC v3.3 includes several new site specific data sources: Revised FNAI natural community maps for 14 FWC managed or co-managed lands, including 7 WMA and 7 WEA, 1 State Forest, 3 Hillsboro County managed areas, and 1 Florida Forever proposal. This data is from the 2017 – 2018 mapping efforts. Select sites and classes were included from the 2016 – 2017 NWFWMD (FLUCCS) dataset. M.C. Davis Conservation areas, 18331x agricultural classes underwent a thorough review and reclassification where appropriate. Prairie Mesic Hammock (1122) was reclassified to Prairie Hydric Hammock (22322) in the Everglades. All SITE level Tree Plantations (18333) were reclassified to Coniferous Plantations (183332). The addition of FWC Oyster Bar (5230) features. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com, including classification corrections to sites in T.M. Goodwin and Ocala National Forest. CLC v3.3 utilizes the updated The Florida Land Cover Classification System (2018), altering the following class names and numbers: Irrigated Row Crops (1833111), Wet Coniferous Plantations (1833321) (formerly 2450), Major Springs (4131) (formerly 3118). Mixed Hardwood-Coniferous Swamps (2240) (formerly Other Wetland Forested Mixed).Changes from Version 3.4 to Version 3.5: The CLC v3.5 includes several new site specific data sources: Revised FNAI natural community maps for 16 managed areas, and 10 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2019 – 2020 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. This version of the CLC is also the first to include land identified as Salt Flats (5241).Changes from Version 3.5 to 3.6: The CLC v3.6 includes several new site specific data sources: Revised FNAI natural community maps for 11 managed areas, and 24 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2018 – 2022 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.6 to 3.7: The CLC 3.7 includes several new site specific data sources: Revised FNAI natural community maps for 5 managed areas (2022-2023). Revised Palm Beach County Natural Areas data for Pine Glades Natural Area (2023). Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. In this version a few SITE level classifications are reclassified for the STATE level classification system. Mesic Flatwoods and Scrubby Flatwoods are classified as Dry Flatwoods at the STATE level. Upland Glade is classified as Barren, Sinkhole, and Outcrop Communities at the STATE level. Lastly Upland Pine is classified as High Pine and Scrub at the STATE level.

  18. B

    UBC Farm Land Use Map - GIS Files

    • borealisdata.ca
    • open.library.ubc.ca
    Updated Nov 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre for Sustainable Food Systems at UBC Farm (2021). UBC Farm Land Use Map - GIS Files [Dataset]. http://doi.org/10.5683/SP2/ZIOMGM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 3, 2021
    Dataset provided by
    Borealis
    Authors
    Centre for Sustainable Food Systems at UBC Farm
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    UBC Farm
    Description

    This dataset contains shape files and supporting files for the most up-to-date (as of the published date) land use map at the UBC Farm. The best uses of these maps are: 1) to visualize locations of field codes in other UBC Farm datasets; 2) to visualize field codes for UBC Farm research projects, and 3) to understand the general layout of the Farm.

  19. m

    The Nature Conservancey Resilient Land Mapping Tool

    • gis.data.mass.gov
    Updated Mar 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2024). The Nature Conservancey Resilient Land Mapping Tool [Dataset]. https://gis.data.mass.gov/datasets/the-nature-conservancey-resilient-land-mapping-tool
    Explore at:
    Dataset updated
    Mar 12, 2024
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Description

    The Resilient and Connected Network is a proposed conservation network of representative climate-resilient sites designed to sustain biodiversity and ecological functions into the future under a changing climate. The network was identified and mapped over a 10-year period by Nature Conservancy scientists using public data available at the state and national scale, and an inclusive process that involved 289 scientists from agencies, academia, and NGOs across the US.

  20. d

    Digital Line Graph - 1:100,000 scale

    • search.dataone.org
    • catalog.data.gov
    Updated Mar 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2017). Digital Line Graph - 1:100,000 scale [Dataset]. https://search.dataone.org/view/4ba6b26f-beb1-467e-9d7a-58be91639522
    Explore at:
    Dataset updated
    Mar 30, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
    Area covered
    Description

    Digital line graph (DLG) data are digital representations of cartographic information. DLGs of map features are converted to digital form from maps and related sources. Intermediate-scale DLG data are derived from USGS 1:100,000-scale 30- by 60-minute quadrangle maps. If these maps are not available, Bureau of Land Management planimetric maps at a scale of 1:100,000 are used. Intermediate-scale DLGs are sold in five categories: (1) Public Land Survey System; (2) boundaries; (3) transportation; (4) hydrography; and (5) hypsography. All DLG data distributed by the USGS are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, and have passed certain quality-control checks.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MassGIS - Bureau of Geographic Information (2019). Land Cover-Land Use (2016) Map Service [Dataset]. https://gis.data.mass.gov/datasets/land-cover-land-use-2016-map-service

Land Cover-Land Use (2016) Map Service

Explore at:
Dataset updated
May 24, 2019
Dataset authored and provided by
MassGIS - Bureau of Geographic Information
Area covered
Description

The statewide dataset contains a combination of land cover mapping from 2016 aerial imagery and land use derived from standardized assessor parcel information for Massachusetts. The data layer is the result of a cooperative project between MassGIS and the National Oceanic and Atmospheric Administration’s (NOAA) Office of Coastal Management (OCM). Funding was provided by the Mass. Executive Office of Energy and Environmental Affairs.

This land cover/land use dataset does not conform to the classification schemes or polygon delineation of previous land use data from MassGIS (1951-1999; 2005).In this map service layer hosted at MassGIS' ArcGIS Server, all impervious polygons are symbolized by their generalized use code; all non-impervious land cover polygons are symbolized by their land cover category. The idea behind this method is to use both cover and use codes to provide a truer picture of how land is being used: parcel use codes may indicate allowed or assessed, not actual use; land cover alone (especially impervious) does not indicate actual use.

See the full datalayer description for more details.This map service is best displayed at large (zoomed in) scales. Also available are a Feature Service and a Tile Service (cache). The tile cache will display very quickly in in ArcGIS Online, ArcGIS Desktop, and other applications that can consume tile services.

Search
Clear search
Close search
Google apps
Main menu