100+ datasets found
  1. NAME GIS Data Layers

    • data.ucar.edu
    archive
    Updated Dec 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David J. Gochis (2024). NAME GIS Data Layers [Dataset]. http://doi.org/10.26023/B15X-8CPM-WV00
    Explore at:
    archiveAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    David J. Gochis
    Time period covered
    Jun 1, 2004 - Sep 30, 2004
    Area covered
    Description

    This dataset contains a variety of spatial data layers compiled in support of research activities associated with the NAME research program. With a few exception the data layers have each been imported and projected to a common geographic coordinate system into the ESRI ArcGIS geographical information system. This dataset is one large (550 MB) gzipped tar file.

  2. M

    DNR QuickLayers for ArcGIS Pro 3

    • gisdata.mn.gov
    esri_addin
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR QuickLayers for ArcGIS Pro 3 [Dataset]. https://gisdata.mn.gov/dataset/quick-layers-pro3
    Explore at:
    esri_addinAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The way to access Layers Quickly.

    Quick Layers is an Add-In for ArcGIS Pro 3 that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 3.11

    To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers for ArcGIS Pro 3) using GDRS Manager.

    Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.

    Installation:

    After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
    1. Open ArcGIS Pro
    2. Project -> Add-In Manager -> Options
    3. Click add folder, and enter the location of the Quick Layers Pro app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers_pro3
    4. After you do this, the Quick Layers ribbon will be available. To also add Quick Layers to the Quick Access Toolbar at the top, right click Quick Layers, and select Add to Quick Access Toolbar

    The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.

  3. a

    Park Needs Assessment Plus - GIS Layers

    • hub.arcgis.com
    • data.lacounty.gov
    • +2more
    Updated Dec 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2022). Park Needs Assessment Plus - GIS Layers [Dataset]. https://hub.arcgis.com/maps/94326d2245334a0da21a9595cfd7863a
    Explore at:
    Dataset updated
    Dec 22, 2022
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    On December 6, 2022, the Los Angeles County Board of Supervisors (BOS) adopted the 2022 Countywide Parks Needs Assessment Plus (PNA+) Final Report. Consistent with this Board action, DPR is making GIS data from the PNA+ available to the public here. Composite layers include:Regional Study AreasRural Study AreasRegional Site InventoryLocal ParksBeachesCountywide TrailsTrailheads and Access PointsPriority Areas for Increasing Access to Regional RecreationPriority Areas for Increasing Access to Rural RecreationPriority Area for Environmental RestorationEnvironmental BenefitsEnvironmental BurdensComposite Population VulnerabilityNote that all data sources in the web map are courtesy of the Los Angeles County Department of Parks and Recreation (DPR). If you'd like to learn more about the data and analysis used in the PNA+, visit https://lacountyparkneeds.org/pnaplus-report/.

    DISCLAIMER: The data herein is for informational purposes, and may not have been prepared for or be suitable for legal, engineering, or surveying intents. The County of Los Angeles reserves the right to change, restrict, or discontinue access at any time. All users of the maps and data presented on https://lacounty.maps.arcgis.com or deriving from any LA County REST URLs agree to the "Terms of Use" outlined on the County of LA Enterprise GIS (eGIS) Hub (https://egis-lacounty.hub.arcgis.com/pages/terms-of-use).

  4. d

    High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska,...

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSIDC (2025). High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://catalog.data.gov/dataset/high-resolution-quickbird-imagery-and-related-gis-layers-for-barrow-alaska-usa-version-1
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    NSIDC
    Area covered
    Utqiagvik, United States, Alaska
    Description

    This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats. Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format). Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data.

  5. Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, Santa Rosa Island
    Description

    The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  6. l

    SMMLCP GIS Data Layers

    • geohub.lacity.org
    • data.lacounty.gov
    Updated Jan 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). SMMLCP GIS Data Layers [Dataset]. https://geohub.lacity.org/items/594c161b58b547428ffd00911824c773
    Explore at:
    Dataset updated
    Jan 21, 2021
    Dataset authored and provided by
    County of Los Angeles
    Description

    These are the main layers that were used in the mapping and analysis for the Santa Monica Mountains Local Coastal Plan, which was adopted by the Board of Supervisors on August 26, 2014, and certified by the California Coastal Commission on October 10, 2014. Below are some links to important documents and web mapping applications, as well as a link to the actual GIS data:

    Plan Website – This has links to the actual plan, maps, and a link to our online web mapping application known as SMMLCP-NET. Click here for website. Online Web Mapping Application – This is the online web mapping application that shows all the layers associated with the plan. These are the same layers that are available for download below. Click here for the web mapping application. GIS Layers – This is a link to the GIS layers in the form of an ArcGIS Map Package, click here (LINK TO FOLLOW SOON) for ArcGIS Map Package (version 10.3). Also, included are layers in shapefile format. Those are included below.

    Below is a list of the GIS Layers provided (shapefile format):

    Recreation (Zipped - 5 MB - click here)

    Coastal Zone Campground Trails (2012 National Park Service) Backbone Trail Class III Bike Route – Existing Class III Bike Route – Proposed

    Scenic Resources (Zipped - 3 MB - click here)

    Significant Ridgeline State-Designated Scenic Highway State-Designated Scenic Highway 200-foot buffer Scenic Route Scenic Route 200-foot buffer Scenic Element

    Biological Resources (Zipped - 45 MB - click here)

    National Hydrography Dataset – Streams H2 Habitat (High Scrutiny) H1 Habitat H1 Habitat 100-foot buffer H1 Habitat Quiet Zone H2 Habitat H3 Habitat

    Hazards (Zipped - 8 MB - click here)

    FEMA Flood Zone (100-year flood plain) Liquefaction Zone (Earthquake-Induced Liquefaction Potential) Landslide Area (Earthquake-Induced Landslide Potential) Fire Hazard and Responsibility Area

    Zoning and Land Use (Zipped - 13 MB - click here)

    Malibu LCP – LUP (1986) Malibu LCP – Zoning (1986) Land Use Policy Zoning

    Other Layers (Zipped - 38 MB - click here)

    Coastal Commission Appeal Jurisdiction Community Names Santa Monica Mountains (SMM) Coastal Zone Boundary Pepperdine University Long Range Development Plan (LRDP) Rural Village

    Contact the L.A. County Dept. of Regional Planning's GIS Section if you have questions. Send to our email.

  7. d

    Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI, MACA, RHOD digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Klemic (1963) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-rhoda-quadrangle-kentucky-nps-grd-gri-maca-rhod-digital-ma
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Service
    Area covered
    Kentucky
    Description

    The Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. a

    James City County GIS Layers Metadata

    • opendata-jcc.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James City County, VA (2019). James City County GIS Layers Metadata [Dataset]. https://opendata-jcc.opendata.arcgis.com/documents/4f77af3c9ff94da48f5b9e8fe5b8744e
    Explore at:
    Dataset updated
    Mar 21, 2019
    Dataset authored and provided by
    James City County, VA
    Description

    James City County GIS Layer Metadata

  9. a

    Onslow County Map Layers Overlay

    • hub.arcgis.com
    Updated May 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onslow County GIS (2017). Onslow County Map Layers Overlay [Dataset]. https://hub.arcgis.com/maps/25ade4dff29547528960e0387672f860
    Explore at:
    Dataset updated
    May 24, 2017
    Dataset authored and provided by
    Onslow County GIS
    Area covered
    Description

    This is an image service that was developed with symbology and labels for the various zoom levels. It was designed to overlay on top of any base map. Data layers included: Driveways, Parcels, City Limits, City ETJ, Zipcode, Townships, Water Bodies, County Boundary, and ParLine Construction. The data is continuously updated and maintained by Onslow County. Any questions please call the Onslow County GIS Department at 1-910-937-1190, Monday - Friday 8am - 5pm.

  10. d

    One hundred seventy environmental GIS data layers for the circumpolar Arctic...

    • search.dataone.org
    • arcticdata.io
    Updated Dec 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arctic Data Center (2020). One hundred seventy environmental GIS data layers for the circumpolar Arctic Ocean region [Dataset]. https://search.dataone.org/view/f63d0f6c-7d53-46ce-b755-42a368007601
    Explore at:
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Arctic Data Center
    Time period covered
    Jan 1, 1950 - Dec 31, 2100
    Area covered
    Arctic Ocean,
    Description

    This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.

  11. Data from: GIS Layer: Zooplankton biomass seasonality (along 110º E)

    • data.gov.au
    • researchdata.edu.au
    xls
    Updated Aug 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSIRO Oceans and Atmosphere - Information and Data Centre (2023). GIS Layer: Zooplankton biomass seasonality (along 110º E) [Dataset]. https://www.data.gov.au/data/dataset/gis-layer-zooplankton-biomass-seasonality-along-110-e
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Aug 11, 2023
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    CSIRO Oceans and Atmosphere - Information and Data Centre
    Description

    Zooplankton biomass point data that has been mapped using MapInfo along 110ºE, Indian Ocean using a standard net (samples from return-trips along the 110ºE latitude line were shifted to 105ºE). These MapInfo layers have been produced by CSIRO for the National Oceans Office, as part of an ongoing commitment to natural resource planning and management through the 'National Marine Bioregionalisation' project. Variations in onscreen colour representation or printed reproduction may affect perception of the contained data.

  12. a

    GIS and Real Estate Data Field Descriptions

    • hub.arcgis.com
    Updated Mar 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James City County, VA (2019). GIS and Real Estate Data Field Descriptions [Dataset]. https://hub.arcgis.com/documents/0c64c2af00bf4afb8fc646af689faeab
    Explore at:
    Dataset updated
    Mar 15, 2019
    Dataset authored and provided by
    James City County, VA
    Description

    Field descriptions for the James City County Parcel layer and the Data table.

  13. a

    FEMA/USACE Storm Surge

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • opendata-jcc.opendata.arcgis.com
    • +1more
    Updated Mar 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James City County, VA (2019). FEMA/USACE Storm Surge [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/2d583d5a39e44d24a2b60404a81de421
    Explore at:
    Dataset updated
    Mar 8, 2019
    Dataset authored and provided by
    James City County, VA
    Area covered
    Description

    FEMA Flood ZonesFEMA provided this layer.Please refer to the FEMA web siteFEMA

  14. e

    McMurdo Dry Valleys Basic GIS Map Layers - up to 2007

    • portal.edirepository.org
    • search.dataone.org
    zip
    Updated Nov 19, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris Gardner (2015). McMurdo Dry Valleys Basic GIS Map Layers - up to 2007 [Dataset]. http://doi.org/10.6073/pasta/a7f501c8c1065f60fdff481e9fb7c1b0
    Explore at:
    zip(10019924)Available download formats
    Dataset updated
    Nov 19, 2015
    Dataset provided by
    EDI
    Authors
    Chris Gardner
    Time period covered
    Oct 10, 2006 - Nov 1, 2007
    Area covered
    Description

    Basic Layers from the MCM-LTER spatial data holdings have been exported and symbolized, and they are available for download here. Most of these layers date from Oct-2007 or earlier, please see the Polar GeoSpatial Center for more updated base and specialized layers. The spatial GIS layers contained in this ZIP file were exported from the 2006 MCM-LTER Spatial Database (now deprecated) in the ESRI Shape File format. For your convenience, Layer Files (.lyr),  which are already symbolized, are also included. The spatial layers contained in the MCM-LTER Spatial Database are accurate (depending on the date the shapefiles in this ZIP file were last exported, they may be out of date). List of layers:  Camp locations.lyr glacier stake locations.lyr glaciers.lyr lakes and ponds.lyr maximum extent.lyr met station locations.lyr ocean.lyr stream gauge locations.lyr streams - monitored.lyr streams - not monitored.lyr topo 50m.lyr Â

  15. GIS Layers and Maps Naming Convention

    • cloud.csiss.gmu.edu
    png
    Updated Jul 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Food Program (2019). GIS Layers and Maps Naming Convention [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/gis-layers-and-maps-naming-convention
    Explore at:
    pngAvailable download formats
    Dataset updated
    Jul 14, 2019
    Dataset provided by
    World Food Programmehttp://da.wfp.org/
    Description

    This excel file contains detailed explanation of WFP standards for layer and map names.

  16. Searching for and adding map layers in ArcGIS Online

    • teachwithgis.co.uk
    Updated Feb 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2020). Searching for and adding map layers in ArcGIS Online [Dataset]. https://teachwithgis.co.uk/datasets/searching-for-and-adding-map-layers-in-arcgis-online-1
    Explore at:
    Dataset updated
    Feb 18, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Click here to open the ArcGIS Online Map Viewer and work through the examples shown belowTo add data to ArcGIS Online we reccomend that you log in. For full functionality use a free schools subscription, or if this is not possible you can use a free public account which will have reduced functionality.

  17. a

    Landsat Layers

    • amerigeo.org
    • data.amerigeoss.org
    • +5more
    Updated Dec 15, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2017). Landsat Layers [Dataset]. https://www.amerigeo.org/maps/3b2e282a79664bed8a579f27de046a02
    Explore at:
    Dataset updated
    Dec 15, 2017
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Description

    This map contains a number of world-wide dynamic image services providing access to various Landsat scenes covering the landmass of the World for visual interpretation. Landsat 8 collects new scenes for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free scenes are displayed by default on top. Most scenes collected since 1st January 2015 are included. The service also includes scenes from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).The service contains a range of different predefined renderers for Multispectral, Panchromatic as well as Pansharpened scenes. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range. This ArcGIS Server dynamic service can be used in Web Maps and ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can also export images, but the exported area is limited to maximum of 2,000 columns x 2,000 rows per request.Data Source: The imagery in these services is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). The data for these services reside on the Landsat Public Datasets hosted on the Amazon Web Service cloud. Users can access full scenes from https://github.com/landsat-pds/landsat_ingestor/wiki/Accessing-Landsat-on-AWS, or alternatively access http://landsatlook.usgs.gov to review and download full scenes from the complete USGS archive.For more information on Landsat 8 images, see http://landsat.usgs.gov/landsat8.php.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit http://landsat.usgs.gov/science_GLS.php.For more information on each of the individual layers, see http://www.arcgis.com/home/item.html?id=d9b466d6a9e647ce8d1dd5fe12eb434b ; http://www.arcgis.com/home/item.html?id=6b003010cbe64d5d8fd3ce00332593bf ; http://www.arcgis.com/home/item.html?id=a7412d0c33be4de698ad981c8ba471e6

  18. d

    Great Basin Montane Watersheds - Streams (Feature Layer)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Great Basin Montane Watersheds - Streams (Feature Layer) [Dataset]. https://catalog.data.gov/dataset/great-basin-montane-watersheds-streams-feature-layer
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Forest Service
    Area covered
    Great Basin
    Description

    Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573Metadata and Downloads

  19. f

    Wave fetch GIS layers for the UK and Ireland at 200m scale

    • figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Burrows (2023). Wave fetch GIS layers for the UK and Ireland at 200m scale [Dataset]. http://doi.org/10.6084/m9.figshare.12029682.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Authors
    Michael Burrows
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ireland, United Kingdom
    Description

    This data layer gives values of summed wave fetch in 32 angular sectors around focal cells, using a model modified from that given in Burrows et al (2012 - see reference). Wave fetch is the distance to the nearest land in a defined direction. The model performs a three-scale search for land around each cell in the model, sparsely (every 10km) up to 200km, every 1km up to 20km away, and every 100m up to 1km distant.Values represent the log base 10 of the summed distance to the nearest land (as the number of 200m grid cell units) across all 32 11.5° sectors. The file is a GeoTIFF using the Ordnance Survey projection.

  20. ArcGIS layers

    • figshare.com
    application/x-dbf
    Updated Oct 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adrian Newton; Alexander Lovegrove (2020). ArcGIS layers [Dataset]. http://doi.org/10.6084/m9.figshare.13102541.v1
    Explore at:
    application/x-dbfAvailable download formats
    Dataset updated
    Oct 16, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Adrian Newton; Alexander Lovegrove
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Layers describing study area, Cranes Moor New Forest, including survey areas

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David J. Gochis (2024). NAME GIS Data Layers [Dataset]. http://doi.org/10.26023/B15X-8CPM-WV00
Organization logo

NAME GIS Data Layers

Explore at:
archiveAvailable download formats
Dataset updated
Dec 26, 2024
Dataset provided by
University Corporation for Atmospheric Research
Authors
David J. Gochis
Time period covered
Jun 1, 2004 - Sep 30, 2004
Area covered
Description

This dataset contains a variety of spatial data layers compiled in support of research activities associated with the NAME research program. With a few exception the data layers have each been imported and projected to a common geographic coordinate system into the ESRI ArcGIS geographical information system. This dataset is one large (550 MB) gzipped tar file.

Search
Clear search
Close search
Google apps
Main menu