84 datasets found
  1. h

    Data from: Land Use Land Cover (LULC)

    • geoportal.hawaii.gov
    • opendata.hawaii.gov
    • +3more
    Updated Dec 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2016). Land Use Land Cover (LULC) [Dataset]. https://geoportal.hawaii.gov/datasets/land-use-land-cover-lulc
    Explore at:
    Dataset updated
    Dec 30, 2016
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Description: Land Use Land Cover of main Hawaiian Islands as of 1976Source: 1:100,000 1976 Digital GIRAS (Geographic Information Retrieval and Analysis) files. Land Use and Land Cover (LULC) data consists of historical land use and land cover classification data that was based primarily on the manual interpretation of 1970's and 1980's aerial photography. Secondary sources included land use maps and surveys. There are 21 possible categories of cover type. The spatial resolution for all LULC files will depend on the format and feature type. Files in GIRAS format will have a minimum polygon area of 10 acres (4 hectares) with a minimum width of 660 feet (200 meters) for manmade features. Non-urban or natural features have a minimum polygon area of 40 acres (16 hectares) with a minimum width of 1320 feet (400 meters). Files in CTG format will have a resolution of 30 meters. May 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of the 2016 GIS database conversion and were no longer needed.For additional information, please refer to https://files.hawaii.gov/dbedt/op/gis/data/lulc.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  2. z

    Pakistan 30m land use land cover and carbon storage dataset (1990-2020)

    • zenodo.org
    • data.niaid.nih.gov
    tiff, zip
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Waleed Mirza; Waleed Mirza (2024). Pakistan 30m land use land cover and carbon storage dataset (1990-2020) [Dataset]. http://doi.org/10.1016/j.eiar.2023.107396
    Explore at:
    tiff, zipAvailable download formats
    Dataset updated
    Oct 23, 2024
    Dataset provided by
    Elsevier
    Authors
    Waleed Mirza; Waleed Mirza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pakistan
    Description

    Urbanization-led land cover change impacts terrestrial carbon storage capacity: A high-resolution remote sensing-based nation-wide assessment in Pakistan (1990–2020) -

    This dataset provides high-resolution, nationwide land use/land cover (LULC) and terrestrial carbon stock maps of Pakistan for four epochs: 1990, 2000, 2010, and 2020. Developed using multi-sensor satellite imagery and advanced classification techniques in Google Earth Engine (GEE), the dataset presents a comprehensive analysis of land cover changes driven by urbanization and their impacts on carbon storage capacity over 30 years.

    The LULC data includes nine distinct classes, covering key land cover types such as forest cover, agriculture, rangeland, wetlands, barren lands, water bodies, built-up areas, and snow/ice. Classification was performed using a hybrid machine learning approach, and the accuracy of the land cover maps was validated using a stratified random sampling approach.

    The carbon stock maps were derived using the InVEST model, which estimated carbon storage in four major carbon pools (above-ground biomass, below-ground biomass, soil organic carbon, and dead organic matter) based on the LULC maps. The results showed a significant decline in carbon storage due to rapid urban expansion, particularly in major cities like Karachi and Lahore, where substantial forest and agricultural lands were converted into urban areas. The study estimates that Pakistan lost approximately -5% of its carbon storage capacity over this period, with urban areas growing by over ~1040%.

    This dataset is a valuable resource for researchers, policymakers, and environmental managers, providing crucial insights into the long-term impacts of urbanization on land cover and carbon sequestration. It is expected to support future land management strategies, urban planning, and climate change mitigation efforts. The high temporal and spatial resolution of the dataset makes it ideal for monitoring land cover dynamics and assessing ecosystem services over time.

    This dataset is aslo available as Google Earth Engine application. For more details check:

    > Github Project repository: https://github.com/waleedgeo/lulc_pk
    > Paper DOI: https://doi.org/10.1016/j.eiar.2023.107396
    > Paper PDF: https://waleedgeo.com/papers/waleed2024_paklulc.pdf

    If you find this work useful, please consider citing it as

    Waleed, M., Sajjad, M., & Shazil, M. S. (2024). Urbanization-led land cover change impacts terrestrial carbon storage capacity: A high-resolution remote sensing-based nation-wide assessment in Pakistan (1990–2020). Environmental Impact Assessment Review, 105, 107396.

    Contributors:
    Mirza Waleed (email) (Linkedin)
    Muhammad Sajjad (email) (Linkedin)
    Muhammad Shareef Shazil

    To check other work, please check:
    My Webpage & Google Scholar

  3. Land Use 2002 for New Jersey Generalized from 2007 LULC (Download)

    • gisdata-njdep.opendata.arcgis.com
    • opendata.rcmrd.org
    • +2more
    Updated May 25, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NJDEP Bureau of GIS (2010). Land Use 2002 for New Jersey Generalized from 2007 LULC (Download) [Dataset]. https://gisdata-njdep.opendata.arcgis.com/documents/4cb87b1c32084814bd062c6aae7f313b
    Explore at:
    Dataset updated
    May 25, 2010
    Dataset provided by
    New Jersey Department of Environmental Protectionhttp://www.nj.gov/dep/
    Authors
    NJDEP Bureau of GIS
    Area covered
    New Jersey
    Description

    Please note that this file is large, ~450 MB, and may take a substantial amount of time to download especially on slower internet connections.Shapefile (NJ State Plane NAD 1983) download: Click "Open" or Click hereFile Geodatabase (NJ State Plane NAD 1983) download: Click hereThis data represents a "generalized" version of the 2007 LULC. To improve the performance of the web applications displaying the 2002 land use data, it was necessary to create a new simplified layer that included only the minimum number of polygons and attributes needed to represent the 2002 land use conditions. The 2007 LU/LC data set is the fourth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002 and 2007. This present 2007 update was created by comparing the 2002 LU/LC layer from NJ DEP's Geographical Information Systems (GIS) database to 2007 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2007 land use directly to the base data layer. All 2002 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2002-2007 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2007. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2007Land Use/Land Cover (LU/LC) data sets, which were mapped by Watershed Management Area (WMA). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.

  4. Global LULC projection dataset from 2020 to 2100 at a 1km resolution

    • figshare.com
    tiff
    Updated Sep 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tianyuan Zhang; Changxiu Cheng; Xudong Wu (2023). Global LULC projection dataset from 2020 to 2100 at a 1km resolution [Dataset]. http://doi.org/10.6084/m9.figshare.23542860.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Sep 27, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Tianyuan Zhang; Changxiu Cheng; Xudong Wu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is on a global scale with a resolution of 1 km grid and encompasses a timespan from 2020 to 2100. These data are projected in the world-Mercator projection coordinate system and are provided in single-band GeoTIFF format, which can be easily utilized by various mainstream GIS and RS platforms such as ArcGIS, QGIS, ENVI, as well as programming languages such as Python and MATLAB. The simulated data files follow a standardized naming convention “sspx_pp_yyyy.tif”, where x represents the simulated SSP scenario (1 to 5), pp represents the simulated RCP scenario; and yyyy represents the simulated year. For example, the data file named “ssp1_26_2030.tif” corresponds to the LULC simulation data for the year 2030 under the SSP1-2.6 scenario. Each GeoTIFF data file includes integer raster attribute values ranging from 1 to 6, which represent the following land use types: cropland, forest, grassland, urban, barren, and water.

  5. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • pacificgeoportal.com
    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  6. n

    Central American Vegetation/Land Cover Classification and Conservation...

    • earthdata.nasa.gov
    • dataverse.harvard.edu
    • +3more
    Updated Dec 31, 1998
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (1998). Central American Vegetation/Land Cover Classification and Conservation Status [Dataset]. http://doi.org/10.7927/H4W37T87
    Explore at:
    Dataset updated
    Dec 31, 1998
    Dataset authored and provided by
    ESDIS
    Area covered
    Central America
    Description

    The Central American Vegetation/Land Cover Classification and Conservation Status consists of GIS coverages of vegetation classes (forests, woodlands, savannas, shrubs, grasslands, wetlands, rocks, sand, soils, inland waters, parks and reserves) for Central America, derived from 1-kilometer resolution Advanced Very High Resolution Radiometer (AVHRR) imagery. This data set is produced by Proyecto Ambiental Regional de Centroamerica/Central America Protected Areas Systems (PROARCA/CAPAS), a conservation partnership of the Central American Commission on Environment and Development (CCAD), U.S. Agency for International Development (USAID), International Resources Group, Ltd. (IRG), The Nature Conservancy (TNC), Winrock International (WI), and is distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  7. d

    West Africa Land Use Land Cover Time Series

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). West Africa Land Use Land Cover Time Series [Dataset]. https://catalog.data.gov/dataset/west-africa-land-use-land-cover-time-series
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Africa, West Africa
    Description

    This series of three-period land use land cover (LULC) datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.

  8. Sentinel-2 10m Land Use/Land Cover Time Series

    • cacgeoportal.com
    • colorado-river-portal.usgs.gov
    • +10more
    Updated Oct 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Time Series [Dataset]. https://www.cacgeoportal.com/datasets/cfcb7609de5f478eb7666240902d4d3d
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  9. o

    10m Annual Land Use Land Cover (9-class)

    • registry.opendata.aws
    • collections.sentinel-hub.com
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Impact Observatory (2023). 10m Annual Land Use Land Cover (9-class) [Dataset]. https://registry.opendata.aws/io-lulc/
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    <a href="https://www.impactobservatory.com/">Impact Observatory</a>
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to the Sentinel-2 annual scene collections from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%. These maps have been improved from Impact Observatory’s previous release and provide a relative reduction in the amount of anomalous change between classes, particularly between “Bare” and any of the vegetative classes “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”. This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery. Data can be accessed directly from the Registry of Open Data on AWS, from the STAC 1.0.0 endpoint, or from the IO Store for a specific Area of Interest (AOI).

  10. a

    Africa Land Cover

    • africageoportal.com
    • rwanda.africageoportal.com
    • +3more
    Updated Dec 7, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2017). Africa Land Cover [Dataset]. https://www.africageoportal.com/maps/africa::africa-land-cover/about
    Explore at:
    Dataset updated
    Dec 7, 2017
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This map features Africa Land Cover at 30m resolution from MDAUS BaseVue 2013, referencing the World Land Cover 30m BaseVue 2013 layer.Land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.MDA updated the underlying data in late 2016 and this service was updated in February 2017. An improved selection of cloud-free images was used to produce the update, resulting in improvement of classification quality to 80% of the tiles for this service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data across the ArcGIS platform. It can also be used as an analytic input in ArcMap and ArcGIS Pro.This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.

  11. f

    Data from: Integrating geographical information systems, remote sensing, and...

    • tandf.figshare.com
    docx
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Armstrong Manuvakola Ezequias Ngolo; Teiji Watanabe (2023). Integrating geographical information systems, remote sensing, and machine learning techniques to monitor urban expansion: an application to Luanda, Angola [Dataset]. http://doi.org/10.6084/m9.figshare.20401962.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Armstrong Manuvakola Ezequias Ngolo; Teiji Watanabe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Angola, Luanda
    Description

    According to many previous studies, application of remote sensing for the complex and heterogeneous urban environments in Sub-Saharan African countries is challenging due to the spectral confusion among features caused by diversity of construction materials. Resorting to classification based on spectral indices that are expected to better highlight features of interest and to be prone to unsupervised classification, this study aims (1) to evaluate the effectiveness of index-based classification for Land Use Land Cover (LULC) using an unsupervised machine learning algorithm Product Quantized K-means (PQk-means); and (2) to monitor the urban expansion of Luanda, the capital city of Angola in a Logistic Regression Model (LRM). Comparison with state-of-the-art algorithms shows that unsupervised classification by means of spectral indices is effective for the study area and can be used for further studies. The built-up area of Luanda has increased from 94.5 km2 in 2000 to 198.3 km2 in 2008 and to 468.4 km2 in 2018, mainly driven by the proximity to the already established residential areas and to the main roads as confirmed by the logistic regression analysis. The generated probability maps show high probability of urban growth in the areas where government had defined housing programs.

  12. Data from: Land cover classification using Landsat Enhanced Thematic Mapper...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Buyantuyev (2015). Land cover classification using Landsat Enhanced Thematic Mapper (ETM) data - year 2005 [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-cap%2F377%2F6
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Alexander Buyantuyev
    Time period covered
    Mar 8, 2005
    Area covered
    Description

    A fundamental dataset required for ecosystem analysis consists of the major types of land cover present in the study area and their areal percentages. Land cover refers to the physical nature of the surficial materials present in a given area such as water, grass, clay-rich soil, asphalt, or concrete. Land cover classification can be used as input into a variety of ecological models, and land cover maps can be constructed to aid in planning field sampling strategy. The land cover types can also be linked to different land use categories to investigate temporal and spatial changes in the urban ecosystem.

  13. D

    2012 Land Use Land Cover

    • data.delaware.gov
    • udel.hub.arcgis.com
    Updated Aug 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2012 Land Use Land Cover [Dataset]. https://data.delaware.gov/w/vgb7-dzz9/989r-3cju?cur=-pdJ9K1xnI1
    Explore at:
    kmz, xml, kml, application/geo+json, csv, xlsxAvailable download formats
    Dataset updated
    Aug 23, 2021
    Description

    The 2012 Land Use Land Cover (LULC) update was performed using computer interactive heads-up digitizing techniques and ArcGIS software. The baseline datasets were year 2012 digital CIR orthophotos and the State’s existing 2007 LULC data. The data was digitally subdivided into working production modules based on the 1:24,000 scale USGS topographic quadrangle system. The LULC update was performed per the modified Anderson, et al., LULC classification and 2 acre minimum mapping unit (140’ width) established for the State’s previous LULC Update projects. The work was performed by Aerial Information Systems, Inc. (AIS) of Redlands, California.AIS staff analysts compared the State’s existing 2007 LULC data to the 2012 project imagery. Every polygon was reviewed for change, accuracy of polygon boundaries, and adherence to the 2012 LULC classification and mapping criteria. Polygon boundaries and codes were modified as necessary through the addition of new lines and codes or the modification of existing arcs. In addition, large obvious errors in the 2007 data were retroactively (‘retro”) corrected. The “retro” mapping process helps to ensure a more accurate baseline dataset for change analysis studies. The 2012 LULC interpretations were incorporated directly into the baseline 2007 LULC coverage to create a final composite coverage containing LULC information for both eras. Each polygon in the composite coverage was assigned an item for 2012 and 2007. Where no LULC change had occurred, the LULC class for both item years remained the same. Where a LULC change did occur, new boundaries were added to the data set as needed, subdividing the existing 2007 polygon, and the polygons were attributed for the appropriate 2012 LULC type. This method ensured that the different layers seamlessly co-registered to each other, creating a sliver free coverage for use in change analysis studies.

  14. Accuracy assessment of LULC for 1984, 1991, 2001, and 2021.

    • plos.figshare.com
    xls
    Updated Sep 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meseret Muche; Getahun Yemata; Eyayu Molla; Wubetie Adnew; A. Muthama Muasya (2023). Accuracy assessment of LULC for 1984, 1991, 2001, and 2021. [Dataset]. http://doi.org/10.1371/journal.pone.0289962.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Meseret Muche; Getahun Yemata; Eyayu Molla; Wubetie Adnew; A. Muthama Muasya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accuracy assessment of LULC for 1984, 1991, 2001, and 2021.

  15. d

    Data from: BD-Sat: High-resolution Land Use Land Cover Dataset for...

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    xxxxx (2025). BD-Sat: High-resolution Land Use Land Cover Dataset for Developing Division of Dhaka, Bangladesh [Dataset]. http://doi.org/10.7910/DVN/LLR3RR
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    xxxxx
    Area covered
    Bangladesh
    Description

    BD-Sat provides a high-resolution dataset that includes pixel-by-pixel LULC annotations for Dhaka metropolitan city and the rural/urban area surrounding it. With the strict and standard procedure, the ground truth is made using Bing-satellite imagery at a ground spatial distance of 2.22 meters/pixel. Three stages well-defined annotation process has been followed with the support from geographic information system (GIS) experts to ensure the reliability of the annotations. We perform several experiments to establish the benchmark results. Results show that the annotated BD-Sat is sufficient to train large deep-learning models with adequate accuracy with five major LULC classes: forest, farmland, built-up, water, and meadow.

  16. U

    West Africa Land Use Land Cover 2000

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Cushing; G. Tappan; Stefanie Herrmann; Suzanne Cotillon (2016). West Africa Land Use Land Cover 2000 [Dataset]. http://doi.org/10.5066/F73N21JF
    Explore at:
    Dataset updated
    Nov 9, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    William Cushing; G. Tappan; Stefanie Herrmann; Suzanne Cotillon
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2000 - 2002
    Area covered
    Africa, West Africa
    Description

    This dataset is the second (circa 2000) in a series of three 2-kilometer land use land cover (LULC) time-periods datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.

  17. c

    USGS Chesapeake Bay Land Use and Land Cover (LULC) Database 2022 Edition

    • data.chesapeakebay.net
    • gsat-chesbay.hub.arcgis.com
    • +2more
    Updated Mar 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Geoplatform (2023). USGS Chesapeake Bay Land Use and Land Cover (LULC) Database 2022 Edition [Dataset]. https://data.chesapeakebay.net/documents/437fa727f7ad4eab900623e77c604994
    Explore at:
    Dataset updated
    Mar 27, 2023
    Dataset authored and provided by
    Chesapeake Geoplatform
    Area covered
    Chesapeake Bay
    Description

    Open the Data Resource: https://doi.org/10.5066/P981GV1LThe Chesapeake Bay Land Use and Land Cover Database (LULC) facilitates characterization of the landscape and land change for and between discrete time periods. The database was developed by the University of Vermont’s Spatial Analysis Laboratory in cooperation with Chesapeake Conservancy and U.S. Geological Survey as part of a 6-year Cooperative Agreement between Chesapeake Conservancy and the U.S. Environmental Protection Agency and a separate Interagency Agreement between the USGS and EPA to provide geospatial support to the Chesapeake Bay Program Office.The database contains one-meter 13-class Land Cover (LC) and 54-class Land Use/Land Cover (LULC) for all counties within or adjacent to the Chesapeake Bay watershed for 2013/14 and 2017/18, depending on availability of National Agricultural Imagery Program (NAIP) imagery for each state. Additionally, 54 LULC classes are generalized into 18 LULC classes for ease of visualization and communication of LULC trends. LC change between discrete time periods, detected by spectral changes in NAIP imagery and LiDAR, represents changes between the 12 land cover classes. LULC change uses LC change to identify where changes are happening and then LC is translated to LULC to represent transitions between the 54 LULC classes. The LULCC data is represented as a LULC class change transition matrix which provides users acres of change between multiple classes. It is organized by 18x18 and 54x54 LULC classes. The Chesapeake Bay Water (CBW) indicates raster tabulations were performed for only areas that fall inside the CBW boundary e.g., if user is interested in CBW portion of a county then they will use LULC Matrix CBW. Conversely, if they are interested change transitions across the entire county, they will use LULC Matrix.The database includes the following data: 2013/2014 Land Cover (LC); 2017/2018 Land Cover (LC); 2013/2014 to 2017/2018 Land Cover Change (LCC); 2013/2014 Land Use and Land Cover (LULC); 2017/2018 Land Use and Land Cover (LULC); and 2013/2014 to 2017/2018 Land Use and Land Cover Change (LULCC) and LULCC matrices.

  18. d

    Gambia Land Use Land Cover 2000

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Gambia Land Use Land Cover 2000 [Dataset]. https://catalog.data.gov/dataset/gambia-land-use-land-cover-2000
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    The Gambia
    Description

    This dataset is the second (circa 2000) in a series of three 1-kilometer land use land cover (LULC) time-periods datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources. To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.

  19. Land-use Inventory of Hangzhou (2010)

    • figshare.com
    zip
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muye Gan; Jinsong Deng; Xinyu Zheng; Yang Hong; Ke Wang (2016). Land-use Inventory of Hangzhou (2010) [Dataset]. http://doi.org/10.6084/m9.figshare.1203657.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Muye Gan; Jinsong Deng; Xinyu Zheng; Yang Hong; Ke Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hangzhou
    Description

    Land-use Inventory of Hangzhou (2010) contains green space,water,build up and bare land. This data is part of a published article: Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis

  20. c

    Carribean Land Cover

    • caribbeangeoportal.com
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Carribean Land Cover [Dataset]. https://www.caribbeangeoportal.com/maps/carribean-land-cover/about
    Explore at:
    Dataset updated
    Mar 19, 2020
    Dataset authored and provided by
    Caribbean GeoPortal
    Area covered
    Description

    This map features land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.This web map uses Terrain with Labels vector layers as its basemap.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.What can you do with this layer?This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.\For more information, see the Landscape Layers group on ArcGIS Online.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hawaii Statewide GIS Program (2016). Land Use Land Cover (LULC) [Dataset]. https://geoportal.hawaii.gov/datasets/land-use-land-cover-lulc

Data from: Land Use Land Cover (LULC)

Related Article
Explore at:
Dataset updated
Dec 30, 2016
Dataset authored and provided by
Hawaii Statewide GIS Program
Area covered
Description

[Metadata] Description: Land Use Land Cover of main Hawaiian Islands as of 1976Source: 1:100,000 1976 Digital GIRAS (Geographic Information Retrieval and Analysis) files. Land Use and Land Cover (LULC) data consists of historical land use and land cover classification data that was based primarily on the manual interpretation of 1970's and 1980's aerial photography. Secondary sources included land use maps and surveys. There are 21 possible categories of cover type. The spatial resolution for all LULC files will depend on the format and feature type. Files in GIRAS format will have a minimum polygon area of 10 acres (4 hectares) with a minimum width of 660 feet (200 meters) for manmade features. Non-urban or natural features have a minimum polygon area of 40 acres (16 hectares) with a minimum width of 1320 feet (400 meters). Files in CTG format will have a resolution of 30 meters. May 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of the 2016 GIS database conversion and were no longer needed.For additional information, please refer to https://files.hawaii.gov/dbedt/op/gis/data/lulc.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

Search
Clear search
Close search
Google apps
Main menu