Facebook
TwitterThe Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geology_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geology_metadata.txt or ever_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the official Street Centerline dataset for the County of Sacramento and the incorporated cities within. The Street Range Index table is a distinct list of street names within the Centerline dataset along with the existing address range for each street by zip code.The Street Name Index table is a distinct list of street names within the Centerline dataset.
Facebook
TwitterPublic Open Space Geographic Information System data collection for Perth and Peel Metropolitan Areas
The public open space (POS) dataset contains polygon boundaries of areas defined as publicly available and open. This geographic information system (GIS) dataset was collected in 2011/2012 using ArcGIS software and aerial photography dated from 2010-2011. The data was collected across the Perth Metro and Peel Region.
POS refer to all land reserved for the provision of green space and natural environments (e.g. parks, reserves, bushland) that is freely accessible and intended for use for recreation purposes (active or passive) by the general public. Four types of “green and natural public open spaces” are distinguished: (1) Park; (2) Natural or Conservation Area; (3) School Grounds; and (4) Residual. Areas where the public are not permitted except on payment or which are available to limited and selected numbers by membership (e.g. golf courses and sports centre facilities) or setbacks and buffers required by legislation are not included.
Initially, potential POSs were identified from a combination of existing geographic information system (GIS) spatial data layers to create a generalized representation of ‘green space’ throughout the Perth metropolitan and Peel regions. Base data layers include: cadastral polygons, metropolitan and regional planning scheme polygons, school point locations, and reserve vesting polygons. The ‘green’ space layer was then visually updated and edited to represent the true boundaries of each POS using 2010-2011 aerial photography within the ArcGIS software environment. Each resulting ’green’ polygon was then classified using a decision tree into one of four possible categories: park, natural or conservation area, school grounds, or residual green space.
Following the classification process, amenity and other information about each POS was collected for polygons classified as “Park” following a protocol developed at the Centre for the Built Environment and Health (CBEH) called POSDAT (Public Open Space Desktop Auditing Tool). The parks were audited using aerial photography visualized using ArcGIS software. . The presence or absence of amenities such as sporting facilities (e.g. tennis courts, soccer fields, skate parks etc) were audited as well as information on the environmental quality (i.e. presence of water, adjacency to bushland, shade along paths, etc), recreational amenities (e.g. presence of BBQ’, café or kiosks, public access toilets) and information on selected features related to personal safety.
The data is stored in an ArcGIS File Geodatabase Feature Class (size 4MB) and has restricted access.
Data creation methodology, data definitions, and links to publications based on this data, accompany the dataset.
Facebook
TwitterCDFW BIOS GIS Dataset, Contact: Alice Brewster, Description: The objective of this study was to produce a baseline GIS vegetation map for use by the Nature Conservancy and others in monitoring and managing the Nature Reserve of Orange County's coastal subregion. Data were derived principally from remote sensing, using the Airborne Data Acquisition and Registration imaging system. Additional objectives were to define appropriate methods for mapping the site and to develop a database structure that facilitates use in monitoring and management applications.
Facebook
TwitterJurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The
Facebook
TwitterClick to downloadClick for metadataService URL: https://gis.dnr.wa.gov/site2/rest/services/Public_Forest_Practices/WADNR_PUBLIC_FP_Water_Type/MapServer/4For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.The DNR Forest Practices Wetlands Geographic Information System (GIS) Layer is based on the National Wetlands Inventory (NWI). In cooperation with the Washington State Department of Ecology, DNR Forest Practices developed a systematic reclassification of the original USFWS wetlands codes into WAC 222-16-035 types. The reclassification was done in 1995 according to the Forest Practice Rules in place at the time. The WAC's for defining wetlands are 222-16-035 and 222-16-050.The DNR Forest Practices Wetlands Geographic Information System (GIS) Layer is based on the National Wetlands Inventory (NWI). In cooperation with the Washington State Department of Ecology, DNR Forest Practices developed a systematic reclassification of the original USFWS wetlands codes into WAC 222-16-035 types. The reclassification was done in 1995 according to the Forest Practice Rules in place at the time. The WAC's for defining wetlands are 222-16-035 and 222-16-050.It is intended that these data be only a first step in determining whether or not wetland issues have been or need to be addressed in an area. The DNR Forest Practices Division and the Department of Ecology strongly supports the additional use of hydric soils (from the GIS soils layer) to add weight to the call of 'wetland'. Reports from the Department of Ecology indicate that these data may substantially underestimate the extent of forested wetlands. Various studies show the NWI data is 25-80% accurate in forested areas. Most of these data were collected from stereopaired aerial photos at a scale of 1:58,000. The stated accuracy is that of a 1:24,000 map, or plus or minus 40 feet. In addition, some parts of the state have data that are 30 years old and only a small percentage have been field checked. Thus, for regulatory purposes, the user should not rely solely on these data. On-the-ground checking must accompany any regulatory call based on these data.The reclassification is based on the USFWS FWS_CODE. The FWS_CODE is a concatenation of three subcomponents: Wetland system, class, and water regime. Forest Practices further divided the components into system, subsystem, class, subclass, water regime, special modifiers, xclass, subxclass, and xsystem. The last three items (xsomething) are for wetland areas which do not easily lend themselves to one class alone. The resulting classification system uses two fields: WLND_CLASS and WLND_TYPE. WLND_CLASS indicates whether the polygon is a forested wetland (F), open water (O), or a vegetated wetland (W). WLND_TYPE, indicates whether the wetland is a type A (1), type B (2), or a generic wetland (3) that doesn't fit the categories for A or B type wetlands. WLND_TYPE = 0 (zero) is used where WLND_CLASS = O (letter "O").
The wetland polygon is classified as F, forested wetland; O, open water; or W, vegetated wetland depending on the following FWS_CODE categories: F O W
--------------------------------------------------- Forested Open Vegetated
Wetland Water Wetland
--------------------------------------------PFO* POW PUB5
E2FO PRB* PML2
PUB1-4 PEM*
PAB* L2US5
PUS1-4 L2EM2
PFL* PSS*
L1RB* PML1
L1UB*
L1AB*
L1OW
L2RB*
L2UB*
L2AB*
L2RS*
L2US1-4
L2OW
DNR FOREST PRACTICES WETLANDS DATASET ON FPARS Internet Mapping Website: The FPARS Resource Map and Water Type Map display Forested, Type A, Type B, and "other" wetlands. Open water polygons are not displayed on the FPARS Resource Map and Water Type Map in an attempt to minimize clutter. The following code combinations are found in the DNR Forest Practices wetlands dataset:
WLND_CLASS WLND_TYPE wetland polygon classification F 3 Forested wetland as defined in WAC 222-16-035 O 0 *NWI open water (not displayed on FPARS Resource or Water Type Maps) W 1 Type A Wetland as defined in WAC 222-16-035 W 2 Type B Wetland as defined in WAC 222-16-035 W 3 other wetland
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Wildland-Urban Interface (WUI) is the area where houses meet or intermingle with undeveloped wildland vegetation. This makes the WUI a focal area for human-environment conflicts such as wildland fires, habitat fragmentation, invasive species, and biodiversity decline. Using geographic information systems (GIS), we integrated U.S. Census and USGS National Land Cover Data, to map the Federal Register definition of WUI (Federal Register 66:751, 2001) for the conterminous United States from 1990-2020. These data are useful within a GIS for mapping and analysis at national, state, and local levels. Data are available as a geodatabase and include information such as housing densities for 1990, 2000, 2010, and 2020; wildland vegetation percentages for 1992, 2001, 2011, and 2019; as well as WUI classes in 1990, 2000, 2010, and 2020.This WUI feature class is separate from the WUI datasets maintained by individual forest unites, and it is not the authoritative source data of WUI for forest units. This dataset shows change over time in the WUI data up to 2020.Metadata and DownloadsThis record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterThis abstract contains links to public ArcGIS maps that include locations of carbonate springs and some of their characteristics. Information for accessing and navigating through the maps are included in a PowerPoint presentation IN THE FILE UPLOAD SECTION BELOW. Three separate data sets are included in the maps:
Several base maps are included in the links. The US carbonate map describes and categorizes carbonates (e.g., depth from surface, overlying geology/ice, climate). The carbonate springs map categorizes springs as being urban, specifically within 1000 ft of a road, or rural. The basis for this categorization was that the heat island effect defines urban as within a 1000 ft of a road. There are other methods for defining urban versus rural to consider. Map links and details of the information they contain are listed below.
Map set 1: The WQP map provides three mapping options separated by the parameters available at each spring site. These maps summarize discrete water quality samples, but not data logger availability. Information at each spring provides links for where users can explore further data.
Option 1: WQP data with urban and rural springs labeled, with highlight of springs with or without NWIS data https://www.arcgis.com/home/item.html?id=2ce914ec01f14c20b58146f5d9702d8a
Options 2: WQP data by major ions and a few other solutes https://www.arcgis.com/home/item.html?id=5a114d2ce24c473ca07ef9625cd834b8
Option 3:WQP data by various carbon species https://www.arcgis.com/home/item.html?id=ae406f1bdcd14f78881905c5e0915b96
Map 2: The worldwide carbonate map in the WoKaS data set (citation below) includes a description of carbonate purity and distribution of urban and rural springs, for which discharge data are available: https://www.arcgis.com/apps/mapviewer/index.html?webmap=5ab43fdb2b784acf8bef85b61d0ebcbe.
Reference: Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V., Andreo, B., Apaéstegui, J., Apolit, C., Arfib, B. and Auler, A., 2020. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Scientific Data, 7(1), pp.1-9.
Map 3: Karst and spring data from selected states: This map includes sites that members of the RCN have suggested to our group.
https://uageos.maps.arcgis.com/apps/mapviewer/index.html?webmap=28ed22a14bb749e2b22ece82bf8a8177
This data set is incomplete (as of October 13, 2022 it includes Florida and Missouri). We are looking for more information. You can share data links to additional data by typing them into the hydroshare page created for our group. Then new sites will periodically be added to the map: https://www.hydroshare.org/resource/0cf10e9808fa4c5b9e6a7852323e6b11/
Acknowledgements: These maps were created by Michael Jones, University of Arkansas and Shishir Sarker, University of Kentucky with help from Laura Toran and Francesco Navarro, Temple University.
TIPS FOR NAVIGATING THE MAPS ARE IN THE POWERPOINT DOCUMENT IN THE FILE UPLOAD SECTION BELOW.
Facebook
TwitterHistorical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email
Facebook
Twitterhttps://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use
Cropland Index The Cropland Index evaluates lands used to produce crops based on the following input datasets: Revised Storie Index, California Important Farmland data, Electrical Conductivity (EC), and Sodium Adsorption Ratio (SAR). Together, these input layers were used in a suitability model to generate this raster. High values are associated with better CroplandsCalifornia Important Farmland data – statistical data used for analyzing impacts on California’s agricultural resources from the Farmland Mapping and Monitoring Program. Agricultural land is rated according to soil quality and irrigation status. The maps are updated every two years (on even numbered years) with the use of a computer mapping system, aerial imagery, public review, and field reconnaissance. Cropland Index Mask - This is a constructed data set used to define the model domain. Its footprint is defined by combining the extent of the California Important Farmland data (2018) classifications listed above and the area defined by California Statewide Crop Mapping for the state of California.Prime Farmland – farmland with the best combination of physical and chemical features able to sustain long term agricultural production. This land has the soil quality, growing season, and moisture supply needed to produce sustained high yields. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date.Farmland of Statewide Importance – farmland similar to Prime Farmland but with minor shortcomings, such as greater slopes or less ability to store soil moisture. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date. Unique Farmland – farmland of lesser quality soils used for the production of the state’s leading agricultural crops. This land is usually irrigated but may include Non irrigated orchards or vineyards as found in some climatic zones in California. Land must have been cropped at some time during the four years prior to the mapping date. Gridded Soil Survey Geographic Database (gSSURGO) – a database containing information about soil as collected by the National Cooperative Soil Survey over the course of a century. The information can be displayed in tables or as maps and is available for most areas in the United States and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS. The information was gathered by walking over the land and observing the soil. Many soil samples were analyzed in laboratories. California Revised Storie Index - is a soil rating based on soil properties that govern a soil’s potential for cultivated agriculture in California. The Revised Storie Index assesses the productivity of a soil from the following four characteristics: Factor A, degree of soil profile development; factor B, texture of the surface layer; factor C, slope; and factor X, manageable features, including drainage, microrelief, fertility, acidity, erosion, and salt content. A score ranging from 0 to 100 percent is determined for each factor, and the scores are then multiplied together to derive an index rating.Electrical Conductivity - is the electrolytic conductivity of an extract from saturated soil paste, expressed as Deci siemens per meter at 25 degrees C. Electrical conductivity is a measure of the concentration of water-soluble salts in soils. It is used to indicate saline soils. High concentrations of neutral salts, such as sodium chloride and sodium sulfate, may interfere with the adsorption of water by plants because the osmotic pressure in the soil solution is nearly as high as or higher than that in the plant cells. Sodium Adsorption Ratio - is a measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the Ca + Mg concentration. Soils that have SAR values of 13 or more may be characterized by an increased dispersion of organic matter and clay particles, reduced saturated hydraulic conductivity (Ksat) and aeration, and a general degradation of soil structure.
Facebook
TwitterThe Florida Department of Revenue’s Property Tax Oversight(PTO) program collects parcel level Geographic Information System (GIS) data files every April from all of Florida’s 67 county property appraisers’ offices. This GIS data was exported from these file submissions in August 2025. The GIS parcel polygon features have been joined with thereal property roll (Name – Address – Legal, or NAL)file. No line work was adjusted between county boundaries.The polygon data set represents the information property appraisers gathered from the legal description on deeds, lot layout of recorded plats, declaration of condominium documents, recorded and unrecorded surveys.Individual parcel data is updated continually by each county property appraiser as needed. The GIS linework and related attributions for the statewide parcel map are updated annually by the Department every August. The dataset extends countywide and is attribute by Federal Information Processing Standards (FIPS) code.DOR reference with FIPS county codes and attribution definitions - https://fgio.maps.arcgis.com/home/item.html?id=55e830fd6c8948baae1601fbfc33a3b2If you discover the inadvertent release of a confidential record exempt from disclosure pursuant to Chapter 119, Florida Statutes, public records laws, immediately notify the Department of Revenue at 850-717-6570 and your local Florida Property Appraisers’ Office. Please contact the county property appraiser with any parcel specific questions: Florida Property Appraisers’ Offices:Alachua County Property Appraiser – https://www.acpafl.org/Baker County Property Appraiser – https://www.bakerpa.com/Bay County Property Appraiser – https://baypa.net/Bradford County Property Appraiser – https://www.bradfordappraiser.com/Brevard County Property Appraiser – https://www.bcpao.us/Broward County Property Appraiser – https://bcpa.net/Calhoun County Property Appraiser – https://calhounpa.net/Charlotte County Property Appraiser – https://www.ccappraiser.com/Citrus County Property Appraiser – https://www.citruspa.org/Clay County Property Appraiser – https://ccpao.com/Collier County Property Appraiser – https://www.collierappraiser.com/Columbia County Property Appraiser – https://columbia.floridapa.com/DeSoto County Property Appraiser – https://www.desotopa.com/Dixie County Property Appraiser – https://www.qpublic.net/fl/dixie/Duval County Property Appraiser – https://www.coj.net/departments/property-appraiser.aspxEscambia County Property Appraiser – https://www.escpa.org/Flagler County Property Appraiser – https://flaglerpa.com/Franklin County Property Appraiser – https://franklincountypa.net/Gadsden County Property Appraiser – https://gadsdenpa.com/Gilchrist County Property Appraiser – https://www.qpublic.net/fl/gilchrist/Glades County Property Appraiser – https://qpublic.net/fl/glades/Gulf County Property Appraiser – https://gulfpa.com/Hamilton County Property Appraiser – https://hamiltonpa.com/Hardee County Property Appraiser – https://hardeepa.com/Hendry County Property Appraiser – https://hendryprop.com/Hernando County Property Appraiser – https://hernandocountypa-florida.us/Highlands County Property Appraiser – https://www.hcpao.org/Hillsborough County Property Appraiser – https://www.hcpafl.org/Holmes County Property Appraiser – https://www.qpublic.net/fl/holmes/Indian River County Property Appraiser – https://www.ircpa.org/Jackson County Property Appraiser – https://www.qpublic.net/fl/jackson/Jefferson County Property Appraiser – https://jeffersonpa.net/Lafayette County Property Appraiser – https://www.lafayettepa.com/Lake County Property Appraiser – https://www.lakecopropappr.com/Lee County Property Appraiser – https://www.leepa.org/Leon County Property Appraiser – https://www.leonpa.gov/Levy County Property Appraiser – https://www.qpublic.net/fl/levy/Liberty County Property Appraiser – https://libertypa.org/Madison County Property Appraiser – https://madisonpa.com/Manatee County Property Appraiser – https://www.manateepao.gov/Marion County Property Appraiser – https://www.pa.marion.fl.us/Martin County Property Appraiser – https://www.pa.martin.fl.us/Miami-Dade County Property Appraiser – https://www.miamidade.gov/pa/Monroe County Property Appraiser – https://mcpafl.org/Nassau County Property Appraiser – https://ncpafl.com/Okaloosa County Property Appraiser – https://okaloosapa.com/Okeechobee County Property Appraiser – https://www.okeechobeepa.com/Orange County Property Appraiser – https://ocpaweb.ocpafl.org/Osceola County Property Appraiser – https://www.property-appraiser.org/Palm Beach County Property Appraiser – https://www.pbcgov.org/papa/index.htmPasco County Property Appraiser – https://pascopa.com/Pinellas County Property Appraiser – https://www.pcpao.org/Polk County Property Appraiser – https://www.polkpa.org/Putnam County Property Appraiser – https://pa.putnam-fl.com/Santa Rosa County Property Appraiser – https://srcpa.gov/Sarasota County Property Appraiser – https://www.sc-pa.com/Seminole County Property Appraiser – https://www.scpafl.org/St. Johns County Property Appraiser – https://www.sjcpa.gov/St. Lucie County Property Appraiser – https://www.paslc.gov/Sumter County Property Appraiser – https://www.sumterpa.com/Suwannee County Property Appraiser – https://suwannee.floridapa.com/Taylor County Property Appraiser – https://qpublic.net/fl/taylor/Union County Property Appraiser – https://union.floridapa.com/Volusia County Property Appraiser – https://vcpa.vcgov.org/Wakulla County Property Appraiser – https://mywakullapa.com/Walton County Property Appraiser – https://waltonpa.com/Washington County Property Appraiser – https://www.qpublic.net/fl/washington/Florida Department of Revenue Property Tax Oversight https://floridarevenue.com/property/Pages/Home.aspx
Facebook
TwitterThis dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
Facebook
TwitterThis layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Facebook
TwitterThe Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams, lakes, ponds, reservoirs and mooring cells. Rivers, Lakes, Ponds, Reservoirs, Hidden Lakes, Reservoirs or Ponds: If greater than 25 feet and less than 30 feet wide, is captured as a double line stream. If greater than 30 feet wide it is captured as a river. Lakes are large standing bodies of water greater than 5 acres in size. Ponds are large standing bodies of water greater than 1 acre and less than 5 acres in size. Polygons are created from Stream edges and River Edges. The Ohio River, Monongahela River and Allegheny River are coded as Major Rivers. All other River and Stream polygons are coded as River. If a stream is less than 25 feet wide it is placed as a single line and coded as a Stream. Both sides of the stream are digitized and coded as a Stream for Streams whose width is greater than 25 feet. River edges are digitized and coded as River.
A Drainage Canal is a manmade or channelized hydrographic feature. Drainage Canals are differentiated from streams in that drainage canals have had the sides and/or bottom stabilized to prevent erosion for the predominant length of the feature. Streams may have had some stabilization done, but are primarily in a natural state. Lakes are large standing bodies of water greater than five acres in size. Ponds are large standing bodies of water greater than one acre in size and less than five acres in size. Reservoirs are manmade embankments of water. Included in this definition are both covered and uncovered water tanks. Reservoirs that are greater than one acre in size are digitized. Hidden Streams, Hidden Rivers and Hidden Drainage Canal or Culverts are those areas of drainage where the water flows through a manmade facility such as a culvert. Hydrology Annotation is not being updated but will be preserved. If a drainage feature has been removed, as apparent on the aerial photography, the associated drainage name annotation will be removed. A Mooring Cell is a structure to which tows can tie off while awaiting lockage. They are normally constructed of concrete and steel and are anchored to the river bottom by means of gravity or sheet piling.
Mooring Cells do not currently exist in the Allegheny County dataset but will be added. Locks are devices that are used to control flow or access to a hydrologic feature. The edges of the Lock are captured. Dams are devices that are used to hold or delay the natural flow of water. The edges of the Dam are shown.
This dataset is harvested on a weekly basis from Allegheny County’s GIS data portal. The full metadata record for this dataset can also be found on Allegheny County's GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the "Go to resource" option) to the right of the "ArcGIS Open Dataset" text below.
Category: Environment
Department: Geographic Information Systems Group; Department of Administrative Services
Data Notes: Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot
Development Notes: Original Lakes and Drainage datasets combined to create this layer. Data was updated as a result of a flyover in the spring of 2004. A database field has been defined for all map features named Update Year". This database field will define which dataset provided each map feature. Map features from the current map will be set to "2004". The earlier dataset map features the earlier dataset map features used to supplement the area near the county boundary will be set to "1993". All new or modified map data will have the value for "Update Year" set to "2004".
Data Dictionary: https://docs.google.com/spreadsheets/d/16BWrRkoPtq2ANRkrbG7CrfQk2dUsWRiaS2Ee1mTn7l0/edit?usp=sharing
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Medical Emergency Response StructuresThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays hospitals, medical centers, ambulance services, fire stations and EMS stations in the U.S. Per the USGS, "Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations."Greendale Fire DepartmentData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Medical & Emergency Response) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 135 (USGS National Structures Dataset - USGS National Map Downloadable Data Collection)OGC API Features Link: (Medical Emergency Response Structures - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: The National MapFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Theme CommunityThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes."For other NGDA Content: Esri Federal Datasets
Facebook
TwitterThis is an Allegheny County extract of the 2016 US Census Block Groups downloaded from the following website: https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html.
This dataset was previously harvested on a weekly basis from Allegheny County’s GIS data portal (http://openac.alcogis.opendata.arcgis.com/). The full metadata record for this dataset can also be found on Allegheny County’s GIS portal, at https://openac-alcogis.opendata.arcgis.com/datasets/AlCoGIS::public-wifi-locations/explore.
Department: Geographic Information Systems Group; Department of Administrative Services
See https://www.census.gov/geo/about/contact.html for more information.
Facebook
TwitterThis data is the source of all current parcel identification numbers and the approximate location of the parcel boundaries. These features were created through various means including conversion from mylar maps, heads up digitizing and coordinate geometry. The graphic depiction of the parcel boundaries in this layer is a derivative of the recorded documents that contain the official boundary of each parcel. To determine the accurate definition of any given parcel go to the recorded document housed in the official court recorded system, CPAN.
This layer contains cadastral information for Fairfax County, Virginia. This includes, but is not limited to the portrayal of polygonal features (such as parcels, subdivisions and easements), text (parcel numbers, street names and addresses), and symbols (parkland, schools, "double circles", etc.). This layer was initially developed as a digital copy of the ink-on-mylar property maps maintained by the County since the early 1960's.
For more information go to the Geospatial Property Data Guide.
Contact: Fairfax County Department of Information Technology GIS Division
Data Accessibility: Publicly Available
Update Frequency: Daily
Last Revision Date: 1/1/2000
Creation Date: 1/1/2000
Feature Dataset Name: GISMGR.PARCELS
Layer Name: GISMGR.PARCELS
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Facebook
TwitterThe Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geology_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geology_metadata.txt or ever_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).