description: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.; abstract: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Software market size was valued at approximately USD 7.8 billion in 2023 and is projected to reach USD 15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3% during the forecast period. This impressive growth can be attributed to the increasing demand for efficient data management tools across various industries, which rely on spatial data for decision-making and strategic planning. The rapid advancements in technology, such as the integration of AI and IoT with GIS software, have further propelled the market, enabling organizations to harness the full potential of geographic data in innovative ways.
One of the primary growth drivers of the GIS Software market is the burgeoning need for urban planning and smart city initiatives worldwide. As urbanization trends escalate, cities are increasingly relying on GIS technology to manage resources more effectively, optimize transportation networks, and enhance public safety. The ability of GIS software to provide real-time data and spatial analysis is vital for city planners and administrators faced with the challenges of modern urban environments. Furthermore, the trend towards digital transformation in governmental organizations is boosting the adoption of GIS solutions, as they seek to improve operational efficiency and service delivery.
The agricultural sector is also experiencing significant transformations due to the integration of GIS software, which is another pivotal growth factor for the market. Precision agriculture, which involves the use of GIS technologies to monitor and manage farming practices, is enabling farmers to increase crop yields while reducing resource consumption. By leveraging spatial data, farmers can make informed decisions about planting, irrigation, and harvesting, ultimately leading to more sustainable agricultural practices. This trend is particularly prominent in regions where agriculture forms a substantial portion of the economy, encouraging the adoption of advanced GIS tools to maintain competitive advantage.
Another influential factor contributing to the growth of the GIS Software market is the increasing importance of environmental management and disaster response. GIS technology plays a crucial role in assessing environmental changes, managing natural resources, and planning responses to natural disasters. The ability to overlay various data sets onto geographic maps allows for better analysis and understanding of environmental phenomena, making GIS indispensable in tackling issues such as climate change and resource depletion. Moreover, governments and organizations are investing heavily in GIS tools that aid in disaster preparedness and response, ensuring timely and effective action during emergencies.
The evolution of GIS Mapping Software has been instrumental in transforming how spatial data is utilized across various sectors. These software solutions offer robust tools for visualizing, analyzing, and interpreting geographic data, enabling users to make informed decisions based on spatial insights. With the ability to integrate multiple data sources, GIS Mapping Software provides a comprehensive platform for conducting spatial analysis, which is crucial for applications ranging from urban planning to environmental management. As technology continues to advance, the capabilities of GIS Mapping Software are expanding, offering more sophisticated features such as 3D visualization and real-time data processing. These advancements are not only enhancing the utility of GIS tools but also making them more accessible to a wider range of users, thereby driving their adoption across different industries.
Regionally, North America and Europe have traditionally dominated the GIS Software market, thanks to their robust technological infrastructure and higher adoption rates of advanced technologies. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increased government spending on infrastructure development, and the expanding telecommunications sector. The growing awareness and adoption of GIS solutions in countries like China and India are significant contributors to this regional growth. Furthermore, Latin America and the Middle East & Africa regions are slowly catching up, with ongoing investments in smart city projects and infrastructure development driving the demand for GIS software.
This nowCOAST time-enabled map service provides maps of NOAA/National Weather Service RIDGE2 mosaics of base reflectivity images across the Continental United States (CONUS) as well as Puerto Rico, Hawaii, Guam and Alaska with a 2 kilometer (1.25 mile) horizontal resolution. The mosaics are compiled by combining regional base reflectivity radar data obtained from 158 Weather Surveillance Radar 1988 Doppler (WSR-88D) also known as NEXt-generation RADar (NEXRAD) sites across the country operated by the NWS and the Dept. of Defense and also from data from Terminal Doppler Weather Radars (TDWR) at major airports. The colors on the map represent the strength of the energy reflected back toward the radar. The reflected intensities (echoes) are measured in dBZ (decibels of z). The color scale is very similar to the one used by the NWS RIDGE2 map viewer. The radar data itself is updated by the NWS every 10 minutes during non-precipitation mode, but every 4-6 minutes during precipitation mode. To ensure nowCOAST is displaying the most recent data possible, the latest mosaics are downloaded every 5 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updateschedule
Background InformationReflectivity is related to the power, or intensity, of the reflected radiation that is sensed by the radar antenna. Reflectivity is expressed on a logarithmic scale in units called dBZ. The "dB" in the dBz scale is logarithmic and is unit less, but is used only to express a ratio. The "z" is the ratio of the density of water drops (measured in millimeters, raised to the 6th power) in each cubic meter (mm^6/m^3). When the "z" is large (many drops in a cubic meter), the reflected power is large. A small "z" means little returned energy. In fact, "z" can be less than 1 mm^6/m^3 and since it is logarithmic, dBz values will become negative, as often in the case when the radar is in clear air mode and indicated by earth tone colors. dBZ values are related to the intensity of rainfall. The higher the dBZ, the stronger the rain rate. A value of 20 dBZ is typically the point at which light rain begins. The values of 60 to 65 dBZ is about the level where 3/4 inch hail can occur. However, a value of 60 to 65 dBZ does not mean that severe weather is occurring at that location. The best reflectivity is lowest (1/2 degree elevation angle) reflectivity scan from the radar. The source of the base reflectivity mosaics is the NWS Southern Region Radar Integrated Display with Geospatial Elements (RIDGE2).
Time InformationThis map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Internal view of the parcel layer. This view contains all the attributes that can be seen by County employees.There are approximately 51,300 real property parcels in Napa County. Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. GIS parcel boundaries are maintained by the Information Technology Services GIS team. Assessor Parcel Maps are created and maintained by the Assessor Division Mapping Section. Each parcel has an Assessor Parcel Number (APN) that is its unique identifier. The APN is the link to various Napa County databases containing information such as owner name, situs address, property value, land use, zoning, flood data, and other related information. Data for this map service is sourced from the Napa County Parcels dataset which is updated nightly with any recent changes made by the mapping team. There may at times be a delay between when a document is recorded and when the new parcel boundary configuration and corresponding information is available in the online GIS parcel viewer.From 1850 to early 1900s assessor staff wrote the name of the property owner and the property value on map pages. They began using larger maps, called “tank maps” because of the large steel cabinet they were kept in, organized by school district (before unification) on which names and values were written. In the 1920s, the assessor kept large books of maps by road district on which names were written. In the 1950s, most county assessors contracted with the State Board of Equalization for board staff to draw standardized 11x17 inch maps following the provisions of Assessor Handbook 215. Maps were originally drawn on linen. By the 1980’s Assessor maps were being drawn on mylar rather than linen. In the early 1990s Napa County transitioned from drawing on mylar to creating maps in AutoCAD. When GIS arrived in Napa County in the mid-1990s, the AutoCAD images were copied over into the GIS parcel layer. Sidwell, an independent consultant, was then contracted by the Assessor’s Office to convert these APN files into the current seamless ArcGIS parcel fabric for the entire County. Beginning with the 2024-2025 assessment roll, the maps are being drawn directly in the parcel fabric layer.Parcels in the GIS parcel fabric are drawn according to the legal description using coordinate geometry (COGO) drawing tools and various reference data such as Public Lands Survey section boundaries and road centerlines. The legal descriptions are not defined by the GIS parcel fabric. Any changes made in the GIS parcel fabric via official records, filed maps, and other source documents are uploaded overnight. There is always at least a 6-month delay between when a document is recorded and when the new parcel configuration and corresponding information is available in the online parcel viewer for search or download.Parcel boundary accuracy can vary significantly, with errors ranging from a few feet to several hundred feet. These distortions are caused by several factors such as: the map projection - the error derived when a spherical coordinate system model is projected into a planar coordinate system using the local projected coordinate system; and the ground to grid conversion - the distortion between ground survey measurements and the virtual grid measurements. The aim of the parcel fabric is to construct a visual interpretation that is adequate for basic geographic understanding. This digital data is intended for illustration and demonstration purposes only and is not considered a legal resource, nor legally authoritative.SFAP & CFAP DISCLAIMER: Per the California Code, RTC 606. some legal parcels may have been combined for assessment purposes (CFAP) or separated for assessment purposes (SFAP) into multiple parcels for a variety of tax assessment reasons. SFAP and CFAP parcels are assigned their own APN number and primarily result from a parcel being split by a tax rate area boundary, due to a recorded land use lease, or by request of the property owner. Assessor parcel (APN) maps reflect when parcels have been separated or combined for assessment purposes, and are one legal entity. The goal of the GIS parcel fabric data is to distinguish the SFAP and CFAP parcel configurations from the legal configurations, to convey the legal parcel configurations. This workflow is in progress. Please be advised that while we endeavor to restore SFAP and CFAP parcels back to their legal configurations in the primary parcel fabric layer, SFAP and CFAP parcels may be distributed throughout the dataset. Parcels that have been restored to their legal configurations, do not reflect the SFAP or CFAP parcel configurations that correspond to the current property tax delineations. We intend for parcel reports and parcel data to capture when a parcel has been separated or combined for assessment purposes, however in some cases, information may not be available in GIS for the SFAP/CFAP status of a parcel configuration shown. For help or questions regarding a parcel’s SFAP/CFAP status, or property survey data, please visit Napa County’s Surveying Services or Property Mapping Information. For more information you can visit our website: When a Parcel is Not a Parcel | Napa County, CA
This dataset represents a compilation of data from various government agencies throughout the City of New York. The underlying geography is derived from the Tax Lot Polygon feature class that is part of the Department of Finance's Digital Tax Map (DTM). The tax lots have been clipped to the shoreline, as defined by NYCMap planimetric features. The attribute information is from the Department of City Planning's PLUTO data. The attribute data pertains to tax lot and building characteristics and geographic, political and administrative information for each tax lot in New York City.The Tax Lot Polygon feature class and PLUTO are derived from different sources. As a result, some PLUTO records do not have a corresponding tax lot in the Tax Lot polygon feature class at the time of release. These records are included in a separate non-geographic PLUTO Only table. There are a number of reasons why there can be a tax lot in PLUTO that does not match the DTM; the most common reason is that the various source files are maintained by different departments and divisions with varying update cycles and criteria for adding and removing records. The attribute definitions for the PLUTO Only table are the same as those for MapPLUTO. DCP Mapping Lots includes some features that are not on the tax maps. They have been added by DCP for cartographic purposes. They include street center 'malls', traffic islands and some built streets through parks. These features have very few associated attributes.To report problems, please open a GitHub issue or email DCPOpendata@planning.nyc.gov.DATES OF INPUT DATASETS:Department of City Planning - E-Designations: 2/5/2021Department of City Planning - Zoning Map Index: 7/31/2019Department of City Planning - NYC City Owned and Leased Properties: 11/15/2020Department of City Planning - NYC GIS Zoning Features: 2/5/2021Department of City Planning - Polictical and Administrative Districts: 11/17/2020Department of City Planning - Geosupport version 20D: 11/17/2020Department of Finance - Digital Tax Map: 1/30/2021Department of Finance - Mass Appraisal System (CAMA): 2/10/2021Department of Finance - Property Tax System (PTS): 2/6/2021Landmarks Preservation Commission - Historic Districts: 2/4/2021Landmarks Preservation Commission - Individual Landmarks: 2/4/2021Department of Information Telecommunications & Technology - Building Footprints: 2/10/2021Department of Parks and Recreation - GreenThumb Garden Info: 1/4/2021
This feature layer provides digital tax parcels for the Organized Towns of the State of Maine. Within Maine, real property data is maintained by the government organization responsible for assessing and collecting property tax for a given location. Organized towns and townships maintain authoritative data for their communities and may voluntarily submit these data to the Maine GeoLibrary Parcel Project. "Maine Parcels Organized Towns Feature" and "Maine Parcels Organized Towns ADB" are the product of these voluntary submissions. Communities provide updates to the Maine GeoLibrary on a non-regular basis, which affects the currency of Maine GeoLibrary parcels data. Another resource for real property transaction data is the County Registry of Deeds, although organized town data should very closely match registry information, except in the case of in-process property conveyance transactions. In Unorganized Territories (defined as those regions of the state without a local government that assesses real property and collects property tax), the Maine Revenue Service is the authoritative source for parcel data. "Maine Parcels Unorganized Territory Feature" is the authoritative GIS data layer for the Unorganized Territories. However, it must always be used with auxiliary data obtained from the online resources of Maine Revenue Services (https://www.maine.gov/revenue/taxes/property-tax) to compile up-to-date parcel ownership information. Property maps are a fundamental base for many municipal activities. Although GIS parcel data cannot replace detailed ground surveys, the data can assist municipal officials with functions such as accurate property tax assessment, planning and zoning. Towns can link maps to an assessor's database and display local information, while town officials can show taxpayers how proposed development or changes in municipal services and regulations may affect the community. In many towns, parcel data also helps to provide public notices, plan bus routes, and carry out other municipal services.
This dataset contains municipality-submitted parcel data along with previously developed parcel data acquired through the Municipal Grants Project supported by the Maine Library of Geographic Information (Maine GeoLibrary). Grant recipient parcel data submissions were guided by standards presented to the Maine GeoLibrary Board on May 21, 2005, which are outlined in the "Standards for Digital Parcel Files" document available on the Maine GeoLibrary publications page (https://www.maine.gov/geolib/policies/standards.html). This dataset also contains municipal parcel data acquired through other sources; the data sources are identified (where available) by the field “FMSCORG”. Note: Join this feature layer with the "Maine Parcels Organized Towns ADB" table (https://maine.hub.arcgis.com/maps/maine::maine-parcels-organized-towns-feature/about?layer=1) for available ownership information. A date field, “FMUPDAT”, is attributed with the most recent update date for each individual parcel if available. The "FMUPDAT" field will not match the "Updated" value shown for the layer. "FMUPDAT" corresponds with the date of update for the individual data, while "Updated" corresponds with the date of update for the ArcGIS Online layer as a whole. Many parcels have not been updated in several years; use the "FMUPDAT" field to verify currency.
LANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)
This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.
© MarineCadastre.gov This layer is a component of BOEMRE Layers.
This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.
For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov
The REST services for National Level Data can be found here:
http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer
REST services for regional level data can be found by clicking on the region of interest from the following URL:
http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE
Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL:
http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx
Currently the following layers are available from this REST location:
OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.
OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.
OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.
Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.
BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.
BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.
Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.
Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip
BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest.
http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.
BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to individual Official Protraction Diagrams and are not uniquely numbered. Only the most recently published paper or pdf
Sourcing accurate and up-to-date map data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps Map Data uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographics data across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
GapMaps Map Data also includes the latest Point-of-Interest (POI) Data for leading retail brands across a range of categories including Fast Food/ QSR, Health & Fitness, Supermarket/Grocery and Cafe sectors which is updated monthly.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
GapMaps Map Data for Asia and MENA can be utilized in any GIS platform and includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Map Data:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Arithmetic map operations are very common procedures used in GIS to combine raster maps resulting in a new and improved raster map. It is essential that this new map be accompanied by an assessment of uncertainty. This paper shows how we can calculate the uncertainty of the resulting map after performing some arithmetic operation. Actually, the propagation of uncertainty depends on a reliable measurement of the local accuracy and local covariance, as well. In this sense, the use of the interpolation variance is proposed because it takes into account both data configuration and data values. Taylor series expansion is used to derive the mean and variance of the function defined by an arithmetic operation. We show exact results for means and variances for arithmetic operations involving addition, subtraction and multiplication and that it is possible to get approximate mean and variance for the quotient of raster maps.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5
If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD
The following text is a summary of the information in the above Data Descriptor.
The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.
The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.
These maps represent a unique global representation of physical access to essential services offered by cities and ports.
The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).
travel_time_to_ports_x (x ranges from 1 to 5)
The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.
Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes
Data type Byte (16 bit Unsigned Integer)
No data value 65535
Flags None
Spatial resolution 30 arc seconds
Spatial extent
Upper left -180, 85
Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)
Temporal resolution 2015
Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.
Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.
The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.
Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points
The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).
Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.
Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.
This process and results are included in the validation zip file.
Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.
The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.
The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.
The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.
Accessibility is defined as the travel time to a location of interest using land (road/off road) or water (navigable river, lake and ocean) based travel. This accessibility is computed using a cost-distance algorithm which computes the “cost” of traveling between two locations on a regular raster grid. Generally this cost is measured in units of time.The input GIS data and a description of the underlying model that were developed by Andrew Nelson in the GEM (Global Environment Monitoring) unit in collaboration with the World Bank’s Development Research Group between October 2007 and May 2008. The pixel values representing minutes of travel time. Available dataset: Joint Research Centre - Land Resource Management Unit
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
This 2013 dataset includes information at the block group-level for the 5-county Austin metro area. Economic, educational, housing, mobility, and environmental indicators are calculated for each block group to provide a comprehensive opportunity index score. This score reflects "opportunity" in the area, defined as a situation or condition that places individuals in a position to be more likely to succeed or excel. This data was collected and calculated by the Kirwan Institute, with collaboration from Green Doors and various community partners, and is compiled in "Geography of Opportunity in Austin" (http://www.greendoors.org/programs/docs/Geography-of-Opportunity-Austin-2013.pdf#page=43). The data can be viewed in an interactive map form here: http://www.arcgis.com/home/webmap/viewer.html?webmap=5db08646b03547abab85aec0a3592fb7. The data is also available in shapefile format for use in ESRI GIS mapping applications here: https://data.austintexas.gov/Neighborhood/Kirwin-Opportunity-Map/3ns6-m3cy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
U.S. Census BlocksThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census Blocks in the United States. A brief description of Census Blocks, per USCB, is that "Census blocks are statistical areas bounded by visible features such as roads, streams, and railroad tracks, and by nonvisible boundaries such as property lines, city, township, school district, county limits and short line-of-sight extensions of roads." Also, "the smallest level of geography you can get basic demographic data for, such as total population by age, sex, and race."Census Block 1007Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Blocks) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 69 (Series Information for 2020 Census Block State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Blocks - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocksFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets
We are also including a tabular version that’s slightly more comprehensive (would include anything that didn’t join to the parcel basefile due to lot alterations or resubdivisions since 2023 and/or due to parcels comprised of condos). This Excel file can be downloaded HERE, and does not contain the latitude and longitude information.Data Dictionary: Attribute Label Definition Source
TAX_ID Unique 26 character property tax identification number Onondaga County Planning
PRINTKEY Abbreviated tax identification number (section-block-lot) Onondaga County Planning
ADDRESSNUM Property’s physical street address Onondaga County Planning
ADDRESSNAM Property’s physical street name Onondaga County Planning
LAT Latitude Onondaga County Planning
LONG Longitude Onondaga County Planning
TAX_ID_1 City Tax ID number (26 digit number used for parcel mapping) City of Syracuse - Assessment
SBL Property Tax Map Number (Section, Block, Lot) City of Syracuse - Assessment
PNUMBR Property Number (10 digit number) City of Syracuse - Assessment
StNum Parcel street number City of Syracuse - Assessment
StName Parcel street name City of Syracuse - Assessment
FullAddress Street number and street name City of Syracuse - Assessment
Zip Parcel zip code City of Syracuse - Assessment
desc_1 Lot description including dimensions City of Syracuse - Assessment
desc_2 Lot description including dimensions City of Syracuse - Assessment
desc_3 Lot description including dimensions City of Syracuse - Assessment
SHAPE_IND
City of Syracuse - Assessment
LUC_parcel New York State property type classification code assigned by assessor during each roll categorizing the property by use. For more details: https://www.tax.ny.gov/research/property/assess/manuals/prclas.htm City of Syracuse - Assessment
LU_parcel New York State property type classification name City of Syracuse - Assessment
LUCat_Old Legacy land use category that corresponds to the overarching NYS category, i.e. all 400s = commercial, all 300s = vacant land, etc. NA
land_av Land assessed value City of Syracuse - Assessment
total_av Full assessed value City of Syracuse - Assessment
Owner Property owner name (First, Initial, Last, Suffix) City of Syracuse - Assessment
Add1_OwnPOBox Property owner mailing address (PO Box) City of Syracuse - Assessment
Add2_OwnStAdd Property owner mailing address (street number, street name, street direction) City of Syracuse - Assessment
Add3_OwnUnitInfo Property owner mailing address unit info (unit name, unit number) City of Syracuse - Assessment
Add4_OwnCityStateZip Property owner mailing address (city, state or country, zip code) City of Syracuse - Assessment
FRONT Front footage for square or rectangular shaped lots and the effective front feet on irregularly shaped lots in feet City of Syracuse - Assessment
DEPTH Actual depth of rectangular shaped lots in feet (irregular lots are usually measured in acres or square feet) City of Syracuse - Assessment
ACRES Number of acres (where values were 0, acreage calculated as FRONT*DEPTH)/43560) City of Syracuse - Assessment
yr_built Year built. Where year built was "0" or null, effective year built is given. (Effective age is determined by comparing the physical condition of one building with that of other like-use, newer buildings. Effective age may or may not represent the actual year built; if there have been constant upgrades or excellent maintenance this may be more recent than the original year built.) City of Syracuse - Assessment
n_ResUnits Number of residential units NA - Calculated field
IPSVacant Is it a vacant structure? ("Commercial" or "Residential" = Yes; null = No) City of Syracuse - Division of Code Enforcement
IPS_Condition Property Condition Score assigned to vacant properties by housing inspectors during routine vacant inspections (1 = Worst; 5 = Best) City of Syracuse - Division of Code Enforcement
NREligible National Register of Historic Places Eligible ("NR Eligible (SHPO)," or "NR Listed") City of Syracuse - Neighborhood and Business Development
LPSS Locally Protected Site Status ("Eligible/Architecturally Significant" or "Local Protected Site or Local District") City of Syracuse - Neighborhood and Business Development
WTR_ACTIVE Water activity code ("I" = Inactive; "A" = Active) City of Syracuse - Water
RNI Is property located in Resurgent Neighborhood Initiative (RNI) Area? (1 = Yes; 0 = No) City of Syracuse - Neighborhood and Business Development
DPW_Quad Geographic quadrant property is located in. Quadrants are divided Northwest, Northeast, Southwest, and Southeast based on property location in relation to I-81 and I-690. DPW uses the quad designation for some types of staff assignments. City of Syracuse - Department of Public Works
TNT_NAME TNT Sector property is located in City of Syracuse - Neighborhood and Business Development
NHOOD City Neighborhood Syracuse-Onondaga County Planning Agency (SOCPA)
NRSA Is property located in Neighborhood Revitilization Strategy Area (NRSA)? (1 = Yes; 0 = No) City of Syracuse - Neighborhood and Business Development
DOCE_Area Geographic boundary use to assign Division of Code Enforcement cases City of Syracuse - Neighborhood and Business Development
ZONE_DIST_PREV Former zoning district code Syracuse-Onondaga County Planning Agency (SOCPA)
REZONE ReZone designation (adopted June 2023) City of Syracuse - Neighborhood and Business Development
New_CC_DIST Current Common Council District property is located in Onondaga County Board of Elections
CTID_2020 Census Tract ID (2020) U.S. Census Bureau
CTLAB_2020 Census Tract Label (2020) U.S. Census Bureau
CT_2020 Census Tract (2020) U.S. Census Bureau
SpecNhood Is property located in a special Neighborhood historic preservation district? (1 = Yes; 0 or null = No) Syracuse-Onondaga County Planning Agency (SOCPA)
InPD Is property located in preservation district? (1 = Yes; 0 or null = No) Syracuse-Onondaga County Planning Agency (SOCPA)
PDNAME Preservation District name Syracuse-Onondaga County Planning Agency (SOCPA)
ELECT_DIST Election district number Onondaga County Board of Elections
CITY_WARD City ward number Onondaga County Board of Elections
COUNTY_LEG Onondaga County Legislative District number (as of Dec 2022) Onondaga County Board of Elections
NYS_ASSEMB New York State Assembly District number (as of Dec 2022) Onondaga County Board of Elections
NYS_SENATE New York State Senate District number (as of Dec 2022) Onondaga County Board of Elections
US_CONGR United States Congressional District number Onondaga County Board of Elections
Dataset Contact InformationOrganization: Neighborhood & Business DevelopmentPosition:Data Program ManagerCity:Syracuse, NYE-Mail Address:opendata@syrgov.netPlease note there is a data quality issue in this iteration with the preservation district (“InPD,” “PDNAME”) and special neighborhood historic district (“SpecNhood”) fields erroneously showing null results for all parcels.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Historical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email
GIS Maps, Transportation Data, and Reports for all modes of travel throughout Massachusetts.
description: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.; abstract: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.