Link to Wisconsin Statewide Parcel Map Initiative data download page on the Wisconsin State Cartographer's website.
The Digital Geologic-GIS Map of Saint Croix National Riverway and Vicinity, Minnesota and Wisconsin is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sacn_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sacn_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sacn_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sacn_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sacn_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sacn_geology_metadata_faq.pdf). Please read the sacn_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Minnesota Geological Survey, Wisconsin Geological and Natural History Survey and National Park Service. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sacn_geology_metadata.txt or sacn_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Web map displaying Wisconsin DNR-produced Digital Elevation Model (DEM) and Hillshade image services, along with their index layer, in formats that are clickable and can be symbolized and filtered. This map can also be used as a starting point to create a new map. To open the web map from DNR's GIS Open Data Portal, click the View Metadata: link to the right of the description, then click Open in Map Viewer.
Geospatial data about Grant County, Wisconsin Parcel Zoning. Export to CAD, GIS, PDF, CSV and access via API.
This data set provides a generalized outline of the 72 counties in Wisconsin. The data is derived from 1:24,000-scale sources.
Web map displaying WI DNR's Wisconsin Leaf-Off Digital Orthophotography imagery layer along with an index layer. This map can be used to identify the year and resolution of each county's imagery in this image service, or as a starting point to create a new map. To open the web map from DNR's GIS Open Data Portal, click the View Metadata: link to the right of the description, then click Open in Map Viewer.*Note that this web map only contains DOPs that Wisconsin DNR has permission to display on a web map. Some counties may have newer DOPs.
Download In State Plane Projection Here. This is our working version of the Lake County boundary. Although technically the county's eastern border extends eastward into Lake Michigan to the state line where Illinois meets Michigan, we routinely use the Lake Michigan shoreline as our eastern boundary for mapping purposes. The north, west and south boundaries are based on a compilation of survey data which aligns well, but not perfectly, with the border as mapped by neighboring counties and the State of Wisconsin, which forms the northern boundary of the county. Update Frequency: This dataset is updated on a weekly basis.
Ecological Landscapes of Wisconsin are aggregations of NHFEU (National Hierarchical Framework of Ecological Units) subsections that have been assigned descriptive names. The Ecological Landscapes of Wisconsin are represented on a May, 1999 map prepared under the direction of the DNR Division of Land Ecosystem Management Planning Team.The NHFEU concept, developed by the USFS, is considered one of the oldest and best-documented ecosystem classification schemes at the federal level. The NHFEU has been refined over the years as new information becomes available to identify lower levels of the hierarchy.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This Coastal Barrier Resources System (CBRS) data set, produced by the U.S. Fish and Wildlife Service (Service), contains areas designated as undeveloped coastal barriers in accordance with the Coastal Barrier Resources Act (CBRA), 16 U.S.C. 3501 et seq., as amended. The boundaries used to create the polygons herein were compiled from the official John H. Chafee Coastal Barrier Resources System CBRS maps, which are accessible at the Service’s Headquarters office or https://www.fws.gov/program/coastal-barrier-resources-act/maps-and-data. These digital polygons are only representations of the CBRS boundaries shown on the official CBRS maps and are not to be considered authoritative. The Service is not responsible for any misuse or misinterpretation of this digital data set, including use of the data to determine eligibility for federal financial assistance such as federal flood insurance. As maps are revised, this data set will be updated with the new boundaries. CBRS boundaries viewed using the CBRS Mapper or the shapefile are subject to misrepresentations beyond the Service’s control, including misalignments of the boundaries with third party base layers and mis-projections of spatial data. The official CBRS map is the controlling document and should be consulted for all official determinations. Official determinations are recommended for all properties that are in close proximity (within 20 feet) of a CBRS boundary. For an official determination of whether or not an area or specific property is located within the CBRS, please follow the procedures found at https://www.fws.gov/service/coastal-barrier-resources-system-property-documentation. For any questions regarding the CBRS, please contact your local Service field office or email CBRA@fws.gov. Contact information for Service field offices can be found at https://www.fws.gov/our-facilities.Data Set Contact: U.S. Fish and Wildlife Service Natural Resource Program Center, GIS Team Lead, richard_easterbrook@fws.gov
Geospatial data about Waukesha County, Wisconsin FEMA Flood Insurance Rate Map Panels. Export to CAD, GIS, PDF, CSV and access via API.
Geospatial data about Sheboygan County, Wisconsin Wetlands. Export to CAD, GIS, PDF, CSV and access via API.
This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Named Landforms of the World version 2 (NLWv2) contains four sub-layers representing geomorphological landforms, provinces, divisions, and their respective cartographic boundaries. The latter supports map making, while the first three represent basic units, such as landforms, which comprise provinces, and provinces comprise divisions. NLW is a substantial update to World Named Landforms in both compilation method and the attributes that describe each landform. For more details, please refer to our paper, Named Landforms of the World: A Geomorphological and Physiographic Compilation, in Annals of the American Association of Geographers. July 2, 2025: We have made Named Landforms of the World v3 (NLWv3) available. Please explore this group containing all of the layers and data. NLWv2 will remain available. Landforms are commonly defined as natural features on the surface of the Earth. The National Geographic Society specifies terrain as the basis for landforms and lists four major types: mountains, hills, plateaus, and plains. Here, however, we define landforms in a richer way that includes properties relating to underlying geologic structure, erosional and depositional character, and tectonic setting and processes. These characteristics were asserted by Dr. Richard E. Murphy in 1968 in his map, titled Landforms of the World. We blended Murphy"s definition for landforms with the work E.M. Bridges, who in his 1990 book, World Geomorphology, provided a globally consistent description of geomorphological divisions, provinces, and sections to give names to the landform regions of the world. AttributeDescriptionBridges Full NameFull name from E.M. Bridges" 1990 "World Geomorphology" Division and if present province and section - intended for labeling print maps of small extents. Bridges DivisionGeomorphological Division as described in E.M. Bridges" 1990 "World Geomorphology" - All Landforms have a division assigned, i.e., no nulls. Bridges ProvinceGeomorphological Province as described in E.M. Bridges" 1990 "World Geomorphology" - Not all divisions are subdivided into provinces. Bridges SectionGeomorphological Section as described in E.M. Bridges" 1990 "World Geomorphology" - Not all provinces are subdivided into sections.StructureLandform Structure as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Alpine Systems: Area of mountains formed by orogenic (collisions of tectonic plates) processes in the past 350 to 500 million years. - Caledonian/Hercynian Shield Remnants: Area of mountains formed by orogenic (collisions of tectonic plates) processes 350 to 500 million years ago. - Gondwana or Laurasian Shields: Area underlaid by mostly crystalline rock formations fromed one billion or more years ago and unbroken by tectonic processes. - Rifted Shield Areas: fractures or spreading along or adjacent to tectonic plate edges. - Isolated Volcanic Areas: volcanic activity occurring outside of Alpine Systems and Rifted Shields. - Sedimentary: Areas of deposition occurring within the past 2.5 million years Moist or DryLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Moist: where annual aridity index is 1.0 or higher, which implies precipitation is absorbed or lost via runoff. - Dry: where annual aridity index is less than 1.0, which implies more precipitation evaporates before it can be absorbed or lost via runoff. TopographicLandform Topographic type variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Karagulle et. al. 2017 - based on rich morphometric characteristics. Coded Value Domain. Values include: - Plains: Areas with less than 90-meters of relief and slopes under 20%. - Hills: Areas with 90- to 300-meters of local relief. - Mountains: Areas with over 300-meters of relief - High Tablelands: Areas with over 300-meters of relief and 50% of highest elevation areas are of gentle slope. - Depressions or Basins: Areas of land surrounded land of higher elevation. Glaciation TypeLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Values include: - Wisconsin/Wurm Glacial Extent: Areas of most recent glaciation which formed 115,000 years ago and ended 11,000 years ago. - Pre-Wisconsin/Wurm Glacial Extent: Areas subjected only to glaciation prior to 140,000 years ago. ContinentAssigned by Author during data compilation. Bridges Short NameThe name of the smallest of Division, Province, or Section containing this landform feature. Murphy Landform CodeCombination of Richard E. Murphy"s 1968 "Landforms of the World" variables expressed as a 3- or 4- letter notation. Used to label medium scale maps. Area_GeoGeodesic area in km2. Primary PlateName of tectonic plate that either completely underlays this landform feature or underlays the largest portion of the landform"s area.Secondary PlateWhen a landform is underlaid by two or more tectonic plates, this is the plate that underlays the second largest area.3rd PlateWhen a landform is underlaid by three or more tectonic plates, this is the plate that underlays the third largest area.4th PlateWhen a landform is underlaid by four or more tectonic plates, this is the plate that underlays the fourth largest area.5th PlateWhen a landform is underlaid by five tectonic plates, this is the plate that underlays the fifth largest area.NotesContains standard text to convey additional tectonic process characteristics. Tectonic ProcessAssigns values of orogenic, rift zone, or above subducting plate. These data are also available as an ArcGIS Pro Map Package: Named_Landforms_of_the_World_v2.0.mpkx.These data supersede the earlier v1.0: World Named Landforms. Change Log:DateDescription of ChangeJuly 20, 2022Corrected spelling of Guiana from incorrect representation, "Guyana", used by Bridges.July 27, 2022Corrected Structure coded value domain value, changing "Caledonian/Hercynian Shield" to "Caledonian , Hercynian, or Appalachian Remnants". Cite as: Frye, C., Sayre R., Pippi, M., Karagulle, Murphy, A., D. Soller, D.R., Gilbert, M., and Richards, J., 2022. Named Landforms of the World. DOI: 10.13140/RG.2.2.33178.93129. Accessed on:
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This Coastal Barrier Resources System (CBRS) data set, produced by the U.S. Fish and Wildlife Service (Service), contains areas designated as undeveloped coastal barriers in accordance with the Coastal Barrier Resources Act (CBRA), as amended (16 U.S.C. 3501 et seq.). These digital polygons are representations of the CBRS boundaries shown on the official CBRS maps referenced in 16 U.S.C. 3503(a). Copies of the official CBRS maps are available for viewing at Service’s Headquarters office and are also available to view or download at https://www.fws.gov/cbra/maps/index.html. The boundaries used to create the polygons herein were compiled between 12/6/2013 and 8/16/2023 from the official CBRS maps. The boundaries of the CBRS Units in Connecticut, Massachusetts, Rhode Island, and the Long Island portion of New York, were digitized from the official paper maps according to the guidelines in a notice published in the Federal Register on August 29, 2013 (see the “Georeferencing and Boundary Interpretation” and “Boundary Transcription” sections of 78 FR 53467; available at https://www.federalregister.gov/d/2013-21167). In all other cases where the official map was created through digital methods, the digital boundary was used. CBRS boundaries viewed using the CBRS Mapper or shapefiles are subject to misrepresentations beyond the Service’s control, including misalignments of the boundaries with third party base layers and misprojections of spatial data. The Service is not responsible for any misuse or misinterpretation of this digital data set, including use of the data to determine eligibility for Federal funding or financial assistance. Users should pair these data with the CBRS Buffer Zone shapefile and an orthoimage when inspecting areas that are within or in close proximity to the CBRS. Properties or structures that fall partially or entirely within the buffer area may be within the CBRS, and an official determination from the Service is recommended. For an official determination of whether or not an area or specific property is located within the CBRS, please follow the procedures found at https://www.fws.gov/service/coastal-barrier-resources-system-property-documentation. The official CBRS map is the controlling document and should be consulted for all official determinations in close proximity (within 20 feet) of a CBRS boundary. For any questions regarding the CBRS, please contact your local Service field office or email CBRA@fws.gov. Contact information for Service field offices can be found at https://www.fws.gov/node/267216.
This dataset contains DNR Managed Lands as parcels with local property name, and GIS and deed acreages. Parcels are symbolized as fee simple (DNR Owned), DNR easement on private land (open/restricted public access) and DNR lease on federal- and county-owned land. This dataset does not contain closed fee or easement. See metadata/data dictionary for interest (transaction type) classification.The parcels are digitized from deed legal description and based on the DNR Landnet System (Public Land Survey System), Wisconsin Transverse Mercator. This data is updated on a weekly basis.This layer represents the geometry of the real estate holdings of the Wisconsin Department of Natural Resources and is not to be interpreted as representing legal property boundaries. Link to the Metadata and Data Dictionary.See also the Public Access Lands interactive mapping application.
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
A GIS database of geologic units and structural features in Wisconsin, with lithology, age, data structure, and format written and arranged just like the other states.
This dataset represents the state of knowledge about the distribution of seafloor sediment for the Southern California continental shelf. The dataset is derived from a map series of seven adjacent but descrete maps illustrating seafloor sediment and rock.
The purpose of this project was to create digital, GIS format versions of the Southern California continental shelf seafloor substrate maps originally produced by PS Associates of Cardiff, California for the Minerals Management Service in Reston, Verginia.
The original data was presented in hard copy format and depicted areas of "rock outcrop, hard-ground, or less than 1 meter of sediment overlaying." In areas where no rock was identified, we designated this as "sediment". Note that this is liberal interpretation of the original map data. A more conservative and accurate interpretation involved using "no data" maps which indicated the areas in which no information on substrate type was gathered. Please see the "no_data" dataset that is part of this series.
Original map title: Isopach map of the post-Wisconsin sediment thickness data sources. California Outer Continental Shelf Archeaological Resource Study from Morro Bay to the Mexican Border. Prepared by P.S. Associates, Contract number 14-12-0001-30272, May 1, 1987. Map scale was 1:125,000. Used maps 1A, 2A, 3A, 4A, 5A.
This data set is a polygon shapefile representing Public Land Survey System (PLSS) townships. The data are a subset of the Wisconsin DNR's 'Landnet' database, automated from 1:24,000-scale sources.*DNR staff have added an alpha field for the range direction field in this layer called DIR_ALPHA which uses W and E instead of numerical direction codes.
This data was downloaded from OpenStreetMap (OSM) roads data for Wisconsin from the OpenStreetMap's GeoFabrik website: http://www.geofabrik.de/data/download.html and reprojected to WTM 83/91. Several attributes were added to facilitate use of the OSM data in DNR basemaps. DNR has made edits to this data to correct errors where known and to hide road features within DNR Managed Lands that are not public roadways.This dataset contains only Interstate Highway, US Highways, and State Highways.To report errors in this dataset, contact Bill Ceelen at William.Ceelen@wisconsin.gov. Additional information about OSM is available on the GeoFabrik site: http://www.geofabrik.de/geofabrik/openstreetmap.html
Link to Wisconsin Statewide Parcel Map Initiative data download page on the Wisconsin State Cartographer's website.