Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Two detailed geomorphological maps (1:2000) depicting landscape changes as a result of a glacial lake outburst flood were produced for the 2.1-km-long section of the Zackenberg river, NE Greenland. The maps document the riverscape before the flood (5 August 2017) and immediately after the flood (8 August 2017), illustrating changes to the riverbanks and morphology of the channel. A series of additional maps (1:800) represent case studies of different types of riverbank responses, emphasising the importance of the lateral thermo-erosion and bank collapsing as significant immediate effects of the flood. The average channel width increased from 40.75 m pre-flood to 44.59 m post-flood, whereas the length of active riverbanks decreased from 1729 to 1657 m. The new deposits related to 2017 flood covered 93,702 m2. The developed maps demonstrated the applicability of small Unmanned Aerial Vehicles (UAVs) for investigating the direct effects of floods, even in the harsh Arctic environment.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global UAV Aerial Survey Services market is experiencing robust growth, driven by increasing demand across diverse sectors. Technological advancements in drone technology, offering higher resolution imagery and improved data processing capabilities, are significantly contributing to this expansion. The market's versatility, providing cost-effective and efficient solutions for various applications, further fuels its growth. Specific sectors like construction, agriculture, and energy are key drivers, utilizing UAV surveys for site mapping, precision agriculture, pipeline inspections, and environmental monitoring. While regulatory hurdles and data security concerns present challenges, the market is overcoming these limitations through the development of standardized operating procedures and robust data encryption techniques. Assuming a conservative CAGR of 15% (a reasonable estimate given the rapid technological advancements and increasing adoption rates in this sector), and a 2025 market size of $2 billion, the market is projected to reach approximately $4.2 Billion by 2033. This substantial growth is further fueled by the increasing affordability and accessibility of UAV technology, enabling more businesses to leverage aerial survey services. The segmentation of the UAV Aerial Survey Services market reveals that orthophoto and oblique image services are widely utilized, catering to diverse application needs. Forestry and agriculture are dominant sectors, with construction, power and energy, and oil & gas industries rapidly adopting this technology. Regional analysis highlights strong growth in North America and Asia-Pacific, driven by significant investments in infrastructure development and agricultural modernization. Europe follows closely, spurred by government initiatives promoting sustainable development and environmental monitoring. The competitive landscape includes both established players like Kokusai Kogyo and Zenrin, and emerging specialized companies, indicating a dynamic and competitive market with potential for further consolidation and innovation. The continued development of advanced data analytics capabilities, integrated with UAV imagery, will create new opportunities and drive market expansion.
This Web Map is included in the Mitigating Marshes Against Sea Level Rise: Thin Layer Placement Experiment application.The National Estuarine Research Reserve (NERR) System Science Collaborative funded a two-year experiment at 8 different NERR sites to provide broad geographic scale, including Chesapeake Bay NERR in Virginia. The three core research questions they aim to answer include: “Is sediment addition an effective adaptation strategy for marshes in the face of sea level rise? How does marsh resilience respond to different levels of sediment addition? How do low versus high marsh habitats differ in their response to this restoration strategy?”.This Story Map is a tool for 6th-12th grade teachers to help teach students about marshes and thin layer placement restoration techniques by exploring maps, videos, and images. Students will analyze how vegetation has changed in the Chesapeake Bay National Estuarine Research Reserve in Virginia (CBNERR-VA) marsh experiment plots in the first year of monitoring. They will evaluate images and graphs different treatments and determine which could be used as a possible restoration technique to combat sea level rise in marshes.Data: https://www.vims.edu/cbnerr/resources/gis-data-layers/index.php
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data used to test the protocol for high-resolution mapping and monitoring of recreational impacts in protected natural areas (PNAs) using unmanned aerial vehicle (UAV) surveys, Structure-from-Motion (SfM) data processing and geographic information systems (GIS) analysis to derive spatially coherent information about trail conditions (Tomczyk et al., 2023). Dataset includes the following folders:
Cocora_raster_data (~3GB) and Vinicunca_raster_data (~32GB) - a very high-resolution (cm-scale) dataset derived from UAV-generated images. Data covers selected recreational trails in Colombia (Valle de Cocora) and Peru (Vinicunca). UAV-captured images were processed using the structure-from-motion approach in Agisoft Metashape software. Data are available as GeoTIFF files in the UTM projected coordinate system (UTM 18N for Colombia, UTM 19S for Peru). Individual files are named as follows [location]_[year]_[product]_[raster cell size].tif, where:
[location] is the place of data collection (e.g., Cocora, Vinicucna)
[year] is the year of data collection (e.g., 2023)
[product] is the tape of files: DEM = digital elevation model; ortho = orthomosaic; hs = hillshade
[raster cell size] is the dimension of individual raster cell in mm (e.g., 15mm)
Cocora_vector_data. and Vinicunca_vector_data – mapping of trail tread and conditions in GIS environment (ArcPro). Data are available as shp files. Data are in the UTM projected coordinate system (UTM 18N for Colombia, UTM 19S for Peru).
Structure-from-motio n processing was performed in Agisoft Metashape (https://www.agisoft.com/, Agisoft, 2023). Mapping was performed in ArcGIS Pro (https://www.esri.com/en-us/arcgis/about-arcgis/overview, Esri, 2022). Data can be used in any GIS software, including commercial (e.g. ArcGIS) or open source (e.g. QGIS).
Tomczyk, A. M., Ewertowski, M. W., Creany, N., Monz, C. A., & Ancin-Murguzur, F. J. (2023). The application of unmanned aerial vehicle (UAV) surveys and GIS to the analysis and monitoring of recreational trail conditions. International Journal of Applied Earth Observations and Geoinformation, 103474. doi: https://doi.org/10.1016/j.jag.2023.103474
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The global Digital Mapping Cameras (DMC) market is experiencing steady growth, projected to reach $230.5 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 3.2% from 2025 to 2033. This growth is fueled by increasing demand for high-resolution imagery across various sectors, including surveying, mapping, agriculture, and infrastructure development. The rising adoption of unmanned aircraft systems (UAS) or drones for aerial photography significantly contributes to market expansion, as they offer cost-effective and efficient data acquisition compared to traditional manned aircraft methods. Technological advancements, such as improved sensor technologies and enhanced image processing capabilities, further drive market expansion by enabling more accurate and detailed mapping solutions. Market segmentation reveals a strong preference for linear array scanners (pushbroom) due to their ability to capture high-quality imagery quickly and efficiently. The application of DMCs in manned aircraft remains significant, although the UAS segment is expected to witness faster growth due to its flexibility and lower operational costs. Competition within the market is robust, with established players such as Vexcel Imaging, Leica Geosystems, and Teledyne Optech alongside newer entrants continually innovating to enhance product offerings and cater to diverse customer needs. The North American market currently holds a dominant share, driven by robust technological advancements and substantial investments in infrastructure projects. However, the Asia-Pacific region is poised for significant growth in the coming years, fueled by rapid urbanization, infrastructure development, and increasing adoption of advanced mapping technologies. While factors like the high initial investment costs of DMCs and potential regulatory hurdles related to drone usage could act as restraints, the overall market outlook for digital mapping cameras remains positive, indicating considerable potential for growth and innovation over the forecast period. The market's evolution will likely see an increased emphasis on data analytics capabilities integrated with DMCs, enabling users to derive actionable insights from the acquired imagery, expanding the application scope beyond basic mapping and into areas like precision agriculture and environmental monitoring.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Flight paths of drone surveys used to capture imagery and video for the July 24, 2019, Hanmore Lake, AB tornado. Ground survey conducted July 26, 2019. DJI Mavic 2 Pro performed 2 flights. Please note that drones are also used for scouting the initial area of interest using a live view on the controller, meaning that some flight paths may not be associated with any imagery. Does not include flights where drone mapping was conducted. View event map here
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global construction mapping services market is experiencing robust growth, driven by the increasing adoption of advanced technologies like drones, LiDAR, and GIS in the construction industry. The market's expansion is fueled by the need for precise and efficient site surveying, improved project planning and management, enhanced safety protocols, and reduced project costs and delays. Several key trends are shaping the market: the rising preference for 3D modeling and digital twins for better visualization and coordination, the integration of Building Information Modeling (BIM) with mapping data for seamless workflows, and the increasing demand for real-time data acquisition and analysis for informed decision-making. The market is segmented by surveying type (aerial and terrestrial) and application (before, during, and after construction). Aerial surveying, particularly using drones, is gaining significant traction due to its cost-effectiveness, speed, and ability to capture detailed data from challenging terrains. The "during construction" application segment is witnessing strong growth as contractors leverage mapping data to monitor progress, identify potential issues, and ensure compliance with project specifications. While the market exhibits substantial growth potential, certain restraints exist. High initial investment costs associated with acquiring and maintaining sophisticated equipment can be a barrier to entry for smaller firms. Data security and privacy concerns related to handling sensitive project information also pose challenges. Furthermore, regulatory hurdles and the need for skilled professionals proficient in data processing and interpretation can impact market growth in some regions. However, ongoing technological advancements and increasing government investments in infrastructure projects are expected to mitigate these restraints. The competition is intense, with both large multinational corporations and specialized surveying firms vying for market share. The market is geographically diverse, with North America and Europe currently holding significant shares but the Asia-Pacific region showing the strongest growth potential due to rapid urbanization and infrastructure development. By 2033, the market is projected to achieve substantial expansion, driven by continuous advancements in technology and the increasing reliance on data-driven decision-making within the construction sector. We estimate the market to reach a value of approximately $15 billion by 2033 assuming a conservative CAGR of 8%, considering the growth factors and restraints.
Drone products captured by CDFW staff for Hope Valley Wildlife Area.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Airborne Photography System market is experiencing robust growth, projected to reach $289.1 million in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 6.2% from 2025 to 2033. This expansion is driven by several key factors. Increasing demand for high-resolution imagery across diverse sectors, including military and defense (surveillance, mapping, and target acquisition), energy (pipeline inspection and infrastructure monitoring), agriculture (precision farming and crop monitoring), and civil engineering (construction progress tracking and site analysis), fuels market growth. Furthermore, technological advancements in drone technology, sensor capabilities, and data processing techniques are enabling higher accuracy, faster processing times, and broader accessibility, making airborne photography solutions increasingly cost-effective and efficient. The market segmentation reveals a strong preference for unmanned aerial vehicles (UAVs) due to their cost-effectiveness and operational flexibility. However, the use of helicopters and fixed-wing aircraft remains significant, particularly in applications requiring long-range coverage and heavy payload capacity. Geographic analysis indicates substantial market penetration in North America and Europe, driven by advanced technological infrastructure and a high concentration of industry players. Growth in the Asia-Pacific region is also anticipated due to increasing government spending on infrastructure development and adoption of precision agriculture techniques. The market's growth trajectory is expected to continue throughout the forecast period, propelled by continued innovation in sensor technology and the emergence of new applications, such as environmental monitoring and disaster response. Challenges remain, primarily regulatory hurdles related to drone operations and data privacy concerns. However, the industry is actively addressing these challenges through the development of standardized operating procedures and data security protocols. The competitive landscape is characterized by a mix of established players and emerging companies, fostering innovation and competition. The continued growth of the market indicates significant investment opportunities for companies involved in the development, manufacturing, and provision of airborne photography systems and related services.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The UAS Facility Maps are designed to identify permissible altitudes (above ground level) at which UAS, operating under the Small UAS Rule (14 CFR 107), can be authorized to fly within the surface areas of controlled airspace. These altitude parameters, provided by the respective air traffic control facilities, are criteria used to evaluate airspace authorization requests (14 CFR 107.41), submitted via FAA.GOV/UAS. Airspace authorization requests for altitudes in excess of the predetermined map parameters will require a lengthy coordination process. This dataset will be continually updated and expanded to include UAS Facility Maps for all controlled airspace by Fall 2017. This map is not updated in real time. Neither the map nor the information provided herein is guaranteed to be current or accurate. Reliance on this map constitutes neither FAA authorization to operate nor evidence of compliance with applicable aviation regulations in or during enforcement proceedings before the National Transportation Safety Board or any other forum. Disclaimer of Liability. The United States government will not be liable to you in respect of any claim, demand, or action—irrespective of the nature or cause of the claim, demand, or action—alleging any loss, injury, or damages, direct or indirect, that may result from the use or possession of any of the information in this draft map or any loss of profit, revenue, contracts, or savings or any other direct, indirect, incidental, special, or consequential damages arising out of any use of or reliance upon any of the information in this draft map, whether in an action in contract or tort or based on a warranty, even if the FAA has been advised of the possibility of such damages. The FAA’s total aggregate liability with respect to its obligations under this agreement or otherwise with respect to the use of this draft map or any information herein will not exceed $0. Some States, Territories, and Countries do not allow certain liability exclusions or damages limitations; to the extent of such disallowance and only to that extent, the paragraph above may not apply to you. In the event that you reside in a State, Territory, or Country that does not allow certain liability exclusions or damages limitations, you assume all risks attendant to the use of any of the information in this draft map in consideration for the provision of such information. Export Control. You agree not to export from anywhere any of the information in this draft map except in compliance with, and with all licenses and approvals required under, applicable export laws, rules, and regulations. Indemnity. You agree to indemnify, defend, and hold free and harmless the United States government from and against any liability, loss, injury (including injuries resulting in death), demand, action, cost, expense, or claim of any kind or character, including but not limited to attorney’s fees, arising out of or in connection with any use or possession by you of this draft map or the information herein. Governing Law. The above terms and conditions will be governed by the laws of each and every state within the United States, without giving effect to that state’s conflict-of-laws provisions. You agree to submit to the jurisdiction of the state or territory in which the relevant use of any of the information in this draft map occurred for any and all disputes, claims, and actions arising from or in connection with this draft map or the information herein.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global aerial photogrammetry surveying services market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise market size figures for 2025 aren't provided, a reasonable estimation based on industry reports and the indicated CAGR (let's assume a conservative CAGR of 8% for illustration) suggests a market valuation in the billions of dollars. The market is segmented by both aircraft type (fixed-wing, rotary-wing, UAVs) and application, with significant growth observed in forestry and agriculture, construction, and infrastructure development. The rising adoption of advanced technologies like LiDAR and drone-based photogrammetry is a key trend, offering higher accuracy, efficiency, and cost-effectiveness compared to traditional methods. This technological advancement is also driving the integration of AI and machine learning for automated data processing and analysis, further accelerating market expansion. The increasing need for precise spatial data for urban planning, environmental monitoring, and disaster management contributes significantly to market growth. However, factors like regulatory hurdles, high initial investment costs associated with advanced technologies, and data security concerns may act as restraints to some extent. Growth is expected to be particularly strong in developing economies experiencing rapid urbanization and infrastructure development. North America and Europe currently hold significant market share, but the Asia-Pacific region is projected to exhibit the fastest growth rate due to increasing infrastructure projects and government initiatives promoting technological advancements in surveying. Companies specializing in aerial photogrammetry are strategically investing in research and development to enhance data acquisition and processing capabilities, offering integrated solutions and catering to the specialized needs of various sectors. The future of the aerial photogrammetry surveying services market is bright, with continued innovation and growing demand expected to fuel its expansion throughout the forecast period (2025-2033). Competition is expected to remain dynamic, with established players and new entrants vying for market share through technological innovation, strategic partnerships, and geographic expansion.
GIS In Telecom Sector Market Size 2024-2028
The GIS in telecom sector market size is forecast to increase by USD 1.91 billion at a CAGR of 14.68% between 2023 and 2028.
Geographic Information Systems (GIS) have gained significant traction In the telecom sector due to the increasing adoption of advanced technologies such as big data, sensors, drones, and LiDAR. The use of GIS enables telecom companies to effectively manage and analyze large volumes of digital data, including satellite and GPS information, to optimize infrastructure monitoring and antenna placement. In the context of smart cities, GIS plays a crucial role in enabling efficient communication between developers and end-users by providing real-time data on construction progress and infrastructure status. Moreover, the integration of LiDAR technology with drones offers enhanced capabilities for surveying and mapping telecom infrastructure, leading to improved accuracy and efficiency.
However, the implementation of GIS In the telecom sector also presents challenges, including data security concerns and the need for servers and computers to handle the large volumes of data generated by these technologies. In summary, the telecom sector's growing reliance on digital technologies such as GIS, big data, sensors, drones, and LiDAR is driving market growth, while the need for effective data management and security solutions presents challenges that must be addressed.
What will be the Size of the GIS In Telecom Sector Market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market In the telecom sector is experiencing significant growth due to the increasing demand for electronic information and visual representation of data in various industries. This market encompasses a range of hardware and software solutions, including GNSS/GPS antennas, Lidar, GIS collectors, total stations, imaging sensors, and more. Major industries such as agriculture, oil & gas, architecture, and infrastructure monitoring are leveraging GIS technology for data analysis and decision-making. The adoption rate of GIS In the telecom sector is driven by the need for efficient data management and analysis, as well as the integration of real-time data from various sources.
Data formats and sources vary widely, from satellite and aerial imagery to ground-based sensors and IoT devices. The market is also witnessing innovation from startups and established players, leading to advancements in data processing capabilities and integration with other technologies like 5G networks and AI. Applications of GIS In the telecom sector include smart urban planning, smart utilities, and smart public works, among others.
How is this GIS In Telecom Sector Industry segmented and which is the largest segment?
The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Geography
APAC
China
North America
Canada
US
Europe
UK
Italy
South America
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. The telecom sector's Global GIS market encompasses software solutions for desktops, mobiles, cloud, and servers, along with developers' platforms. companies provide industry-specific GIS software, expanding the growth potential of this segment. Telecom companies heavily utilize intelligent maps generated by GIS for informed decisions on capacity planning and enhancements, such as improved service and next-generation networks. This drives significant growth In the software segment. Commercial entities offer open-source GIS software to counteract the threat of counterfeit products.
GIS technologies are integral to telecom network management, spatial data analysis, infrastructure planning, location-based services, network coverage mapping, data visualization, asset management, real-time network monitoring, design, wireless network mapping, integration, maintenance, optimization, and geospatial intelligence. Key applications include 5G network planning, network visualization, outage management, geolocation, mobile network optimization, and smart infrastructure planning. The GIS industry caters to major industries, including agriculture, oil & gas, architecture, engineering, construction, mining, utilities, retail, healthcare, government, and smart city planning. GIS solutions facilitate real-time data management, spatial information, and non-spatial information, offering enterprise solutions and transportation applications.
Get a glance at the market report of share of variou
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All information taken fromhttp://www.gsmchoice.co.uk/ [accessed 4 August 2015].
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Airborne platforms used for testing the app and the various sites where flight tests were performed.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Additional photos collected via drone for the July 19, 2020, Thedford, ON tornado. Ground survey conducted July 22, 2020. DJI Mavic 2 Pro used to capture 28 photos. Does not include videos or drone mapping photos [where applicable].View event map here
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Flight paths of drone surveys used to capture imagery for the July 6, 2021, Saint Joachim, ON downburst. Ground survey conducted July 7, 2021. DJI Air 2S performed 3 flights. Please note that drones are also used for scouting the initial area of interest using a live view on the controller, meaning that some flight paths may not be associated with any imagery. Does not include flights where drone mapping was performed.View event map here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example metadata records from the two handsets tested in the study.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Additional photos collected via drone for the June 6, 2022, Enchant, AB tornado. Ground survey conducted June 10, 2022. DJI Mavic 2 Pro used to capture 4 photos. Does not include videos or drone mapping photos [where applicable].View event map here
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Flight paths of drone surveys used to capture imagery and video for the July 26, 2023 Rennie, MB downburst. Ground survey conducted July 27, 2023. DJI Air 2S performed three flights. Please note that drones are also used for scouting the initial area of interest using a live view on the controller, meaning that some flight paths may not be associated with any imagery. View Event Summary Map here
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Flight paths of drone surveys used to capture imagery and video for the July 20, 2023 South Buxton, ON tornado. Ground survey conducted July 21, 2023. DJI Mavic 3E performed 4 flights. Please note that drones are also used for scouting the initial area of interest using a live view on the controller, meaning that some flight paths may not be associated with any imagery.View Event Summary Map Here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Two detailed geomorphological maps (1:2000) depicting landscape changes as a result of a glacial lake outburst flood were produced for the 2.1-km-long section of the Zackenberg river, NE Greenland. The maps document the riverscape before the flood (5 August 2017) and immediately after the flood (8 August 2017), illustrating changes to the riverbanks and morphology of the channel. A series of additional maps (1:800) represent case studies of different types of riverbank responses, emphasising the importance of the lateral thermo-erosion and bank collapsing as significant immediate effects of the flood. The average channel width increased from 40.75 m pre-flood to 44.59 m post-flood, whereas the length of active riverbanks decreased from 1729 to 1657 m. The new deposits related to 2017 flood covered 93,702 m2. The developed maps demonstrated the applicability of small Unmanned Aerial Vehicles (UAVs) for investigating the direct effects of floods, even in the harsh Arctic environment.