100+ datasets found
  1. Data from: A hybrid data model for dynamic GIS : application to marine...

    • figshare.com
    application/x-rar
    Updated Sep 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Younes Hamdani; Rémy thibaud; Christophe Claramunt (2020). A hybrid data model for dynamic GIS : application to marine geomorphological dynamics [Dataset]. http://doi.org/10.6084/m9.figshare.12121386.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Sep 24, 2020
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Younes Hamdani; Rémy thibaud; Christophe Claramunt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract : The search for the most appropriate GIS data model to integrate, manipulate and analyse spatio-temporal data raises several research questions about the conceptualisation of geographic spaces. Although there is now a general consensus that many environmental phenomena require field and object conceptualisations to provide a comprehensive GIS representation, there is still a need for better integration of these dual representations of space within a formal spatio-temporal database. The research presented in this paper introduces a hybrid and formal dual data model for the representation of spatio-temporal data. The whole approach has been fully implemented in PostgreSQL and its spatial extension PostGIS, where the SQL language is extended by a series of data type constructions and manipulation functions to support hybrid queries. The potential of the approach is illustrated by an application to underwater geomorphological dynamics oriented towards the monitoring of the evolution of seabed changes. A series of performance and scalability experiments are also reported to demonstrate the computational performance of the model.Data Description : The data set used in our research is a set of bathymetric surveys recorded over three years from 2009 to 2011 as Digital Terrain Models (DTM) with 2m grid spacing. The first survey was carried out in February 2009 by the French hydrographic office, the second one was recorded on August-September 2010 and the third in July 2011, both by the “Institut Universitaire Européen de la Mer”.

  2. d

    Deepwater Horizon MC252 GIS data from the Environmental Response Management...

    • catalog.data.gov
    • accession.nodc.noaa.gov
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2025). Deepwater Horizon MC252 GIS data from the Environmental Response Management Application (ERMA) collected and/or used during the DWH response between 1989-11-15 and 2015-11-30 in the Northern Gulf of Mexico [Dataset]. https://catalog.data.gov/dataset/deepwater-horizon-mc252-gis-data-from-the-environmental-response-management-application-erma-co
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    (Point of Contact)
    Area covered
    Gulf of Mexico (Gulf of America)
    Description

    This collection contains Environmental Response Management Application (ERMA) GIS layers used as part of the Programmatic Damage Assessment and Restoration Plan (PDARP), including outputs from Synthetic Aperture Radar (SAR) imagery, helicopter flights surveys (observations) of marine mammal and turtles, Mississippi Canyon 252 wellhead location, wellhead buffers, and supporting bathymetric contour data, infrared and photographic images from EPA's airborne spectral photometric environmental collection technology (ASPECT) with geospatial, chemical and radiological information, boom-related response observations, nearshore tissue and sediment samples, forensic and Total Polycyclic Aromatic Hydrocarbon (TPAH) results, stranded oil forensic classification data, and other types of chemistry data, Submerged Aquatic Vegetation (SAV) classifications, seabed sampling and transect data, sample locations for workplan cruises, deep-sea area injury toxicity results and total polycyclic aromatic hydrocarbon (TPAH) results, habitat injury zones, footprint impacts on mesophotic reef resources and other types of benthic habitat data, overflight imagery of the flight path for the NOAA King Air flights taken in October of 2010 and contains post-oiling images collection in support of Natural Resource Damage Assessment (NRDA) marsh monitoring, turtle survey overflight observations, loggerhead sea turtle density grids, sea turtle capture observations and transect analysis, sea turtle strandings, as well as probabilities of oiling and other related datasets, trawl locations, Southeast Area Monitoring and Assessment Program (SEAMAP) plankton trawls, workplan cruise samples, and other related data, delineation of the areas impacted with additional fresh water due to the opening of the diversions in 2011 as part of the Deepwater Horizon oil spill response, surface shoreline oiling characteristics as observed by field surveys performed by Shoreline Cleanup Assessment Techniques (SCAT) teams, marine mammal surveys, observations, telemetry and abundance data including Cytochrome P450 (CYP) dolphin analysis, population and abundance datasets, telemetry, wildlife and aerial observations, bathymetry estimates, and other related Marine Mammal field observations and surveys, presence and spatial distribution of synthetic-based mud (SBM) in deep-sea sediments around the Macondo well, surface sediment, residual kriging, and other oiling analytical data, oyster recruitment and abundance sampling results, estimates of subtidal habitat, estimates of oyster resource, seafloor substrate mapping layers, percent cover, nearshore and subtidal quadrat abundance data, and other related datasets, shoreline exposure model for beach and marsh oiling, wave exposure, habitat classifications, wetland monitoring datasets, and related shoreline datasets, compilation of all the individual Texture Classifying Neural Network Algorithm (TCNNA) days from Synthetic Aperture Radar (SAR) satellite polygons, a variety of cumulative oiling datasets including the Texture Classifying Neural Network Algorithm (TCNNA) from Synthetic Aperture Radar (SAR) satellite polygon layers, burn locations, dispersant operation datasets including estimations of where aerial dispersants were applied via aerial flight paths, dispersant airport locations, daily flight tracks, and vessel dispersant tracks, as well as locations of subsurface dispersant data, marine mammal surveys, observations, telemetry and abundance data collected including synoptic surveys, helicopter surveys, Cytochrome P450 (CYP) dolphin analysis, population and abundance datasets, telemetry, wildlife and aerial observations, bathymetry estimates, other related marine mammal field observations and surveys, and sea turtle data, and other data related to the Deepwater Horizon oil spill in the Northern Gulf of Mexico. Some of these data were collected during the response to the Mississippi Canyon 252 Deepwater Horizon oil spill in the Northern Gulf of Mexico.

  3. WDPA - Marine and Coastal Protected Areas

    • oceangis.esri.de
    • places-lincolninstitute.hub.arcgis.com
    • +8more
    Updated Sep 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment World Conservation Monitoring Centre (2019). WDPA - Marine and Coastal Protected Areas [Dataset]. https://oceangis.esri.de/datasets/UNEP-WCMC::wdpa-marine-and-coastal-protected-areas
    Explore at:
    Dataset updated
    Sep 12, 2019
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    World Conservation Monitoring Centrehttp://www.unep-wcmc.org/
    Authors
    UN Environment World Conservation Monitoring Centre
    Area covered
    Description

    The World Database on Protected Areas (WDPA) is the most comprehensive global database of marine and terrestrial protected areas, updated on a monthly basis, and is one of the key global biodiversity data sets being widely used by scientists, businesses, governments, International secretariats and others to inform planning, policy decisions and management.The WDPA is a joint project between UN Environment and the International Union for Conservation of Nature (IUCN). The compilation and management of the WDPA is carried out by UN Environment World Conservation Monitoring Centre (UNEP-WCMC), in collaboration with governments, non-governmental organisations, academia and industry. There are monthly updates of the data which are made available online through the Protected Planet website where the data is both viewable and downloadable.Data and information on the world's protected areas compiled in the WDPA are used for reporting to the Convention on Biological Diversity on progress towards reaching the Aichi Biodiversity Targets (particularly Target 11), to the UN to track progress towards the 2030 Sustainable Development Goals, to some of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) core indicators, and other international assessments and reports including the Global Biodiversity Outlook, as well as for the publication of the United Nations List of Protected Areas. Every two years, UNEP-WCMC releases the Protected Planet Report on the status of the world's protected areas and recommendations on how to meet international goals and targets.Many platforms are incorporating the WDPA to provide integrated information to diverse users, including businesses and governments, in a range of sectors including mining, oil and gas, and finance. For example, the WDPA is included in the Integrated Biodiversity Assessment Tool, an innovative decision support tool that gives users easy access to up-to-date information that allows them to identify biodiversity risks and opportunities within a project boundary.The reach of the WDPA is further enhanced in services developed by other parties, such as the Global Forest Watch and the Digital Observatory for Protected Areas, which provide decision makers with access to monitoring and alert systems that allow whole landscapes to be managed better. Together, these applications of the WDPA demonstrate the growing value and significance of the Protected Planet initiative.Marine and Coastal Protected Areas query:Any of these expressions must be true:Marine is '1'Marine is '2'

  4. A

    Coastal and Marine Geology Program GIS Publications

    • data.amerigeoss.org
    • data.wu.ac.at
    html
    Updated Aug 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Data Exchange (2019). Coastal and Marine Geology Program GIS Publications [Dataset]. https://data.amerigeoss.org/de/dataset/coastal-and-marine-geology-program-gis-publications
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 9, 2019
    Dataset provided by
    Energy Data Exchange
    Description

    The following is a list of publications, in chronological order, containing GIS data that are being served by the USGS, Coastal and Marine Geology Program Internet Map Server (IMS).

  5. c

    Terrestrial and Marine Reference

    • gis.data.cnra.ca.gov
    • data.ca.gov
    • +5more
    Updated Apr 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Nature Organization (2021). Terrestrial and Marine Reference [Dataset]. https://gis.data.cnra.ca.gov/datasets/CAnature::terrestrial-and-marine-reference
    Explore at:
    Dataset updated
    Apr 8, 2021
    Dataset authored and provided by
    CA Nature Organization
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These boundaries define the regions based on terrestrial and marine areas. These are intended to be used in by CA Nature to support activities related to Executive Order N-82-20. These include California's 30x30 effort, Climate Smart Land Strategies, and equitable access to open space. This layer is derived from the 4th California Climate Assessment regions, and enhanced using the California County Boundaries dataset (version 19.1) maintained by the California Department of Forestry and Fire Protection's Fire Resource Assessment Program, and the 3 Nautical Mile marine boundary for California sourced from the California Department of Fish and Wildlife.

  6. d

    Coral reef fish species survey data GIS from the Florida Keys National...

    • catalog.data.gov
    • search.dataone.org
    • +5more
    Updated Nov 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2025). Coral reef fish species survey data GIS from the Florida Keys National Marine Sanctuary (NCEI Accession 0001394) [Dataset]. https://catalog.data.gov/dataset/coral-reef-fish-species-survey-data-gis-from-the-florida-keys-national-marine-sanctuary-ncei-ac
    Explore at:
    Dataset updated
    Nov 1, 2025
    Dataset provided by
    (Point of Contact)
    Area covered
    Florida Keys, Florida Keys National Marine Sanctuary
    Description

    This data set consists of an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The dataset contains information about 5 classes of coral reefs, 216 fish species, and 6 benthic habitat.

  7. r

    Data from: GIS Layer: Sea Temperature in the Northern Marine Region

    • researchdata.edu.au
    Updated Jun 26, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Ocean Data Network (2008). GIS Layer: Sea Temperature in the Northern Marine Region [Dataset]. https://researchdata.edu.au/gis-layer-sea-marine-region/1934991
    Explore at:
    Dataset updated
    Jun 26, 2008
    Dataset provided by
    Australian Ocean Data Network
    Time period covered
    1900 - 2000
    Area covered
    Description

    Temperature, linearly interpolated from CARS2000 mean and seasonal fields to 0.1 degree spaced grid, at depths of 0, 150, 500, 1000 and 2000 metres. The loess filter used to create CARS2000 resolves at each point a mean value and a sinusoid with 1 year period (and in some cases a 6 month period sinusoid - the "semi-annual cycle".) The provided "annual amplitude" is simply the magnitude of that annual sinusoid. CARS is a set of seasonal maps of temperature, salinity, dissolved oxygen, nitrate, phosphate and silicate, generated using Loess mapping from all available oceanographic data in the region. It covers the region 100-200E, 50-0S, on a 0.5 degree grid, and on 56 standard depth levels. Higher resolution versions are also available for the Australian continental shelf. The data was obtained from the World Ocean Atlas 98 and CSIRO Marine and NIWA archives. It was designed to improve on the Levitus WOA98 Atlas, in the Australian region. CARS2000 is derived from ocean cast data, which is always measured above the sea floor. However, for properties which do not change rapidly near the seafloor, this would not lead to a significant error. All the limitations of CARS2000 also apply here.

  8. d

    NOAA ENC Direct to GIS

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). NOAA ENC Direct to GIS [Dataset]. https://catalog.data.gov/dataset/noaa-enc-direct-to-gis1
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    NOAA's Electronic Navigational Charts (NOAA ENCs) have been developed to support the marine transportation infrastructure and coastal management. The NOAA ENCs are in S-57, a data standard developed by the International Hydrographic Organization (IHO) to be used for the exchange of digital hydrographic data. NOAA ENCs can be used in Geographic Information Systems, (GIS) allowing for broader public access. Many GIS's, however cannot read an ENC's native S-57 format to address this problem. NOAA's ENC Direct to GIS web portal provides comprehensive access to display, query, and download all available large scale NOAA ENC data in a variety of GIS/CAD formats for non-navigational purposes using Internet mapping service technology. Nautical chart features contained within an NOAA ENC provide a detailed representation of the U.S. coastal and marine environment. This data includes coastal topography, bathymetry, landmarks, geographic place names and marine boundaries. Features in an NOAA ENC are limited in that they only represent the geographic region that is depicted in that particular NOAA ENC. By aggregating nautical features from all NOAA ENCs in the creation of GIS data, a contiguous depiction of the U.S coastal and marine environment is achieved.

  9. d

    California State Waters Map Series--Offshore of Point Conception Web...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Offshore of Point Conception Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-point-conception-web-services
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Conception, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.

  10. d

    Marine Oil Terminals

    • catalog.data.gov
    • data.ca.gov
    • +9more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California State Lands Commission (2024). Marine Oil Terminals [Dataset]. https://catalog.data.gov/dataset/marine-oil-terminals-b2d52
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    California State Lands Commissionhttps://www.slc.ca.gov/
    Description

    This point layer represents approximate locations of Marine Oil Terminals that are regulated by the California State Lands Commission. Most terminal points were collected with Collector for ArcGIS, but some were approximated by other means. The California State Lands Commission makes no warranty as to the accuracy of this data nor assumes any liability for its use. This information is subject to change.

  11. BOEM BSEE Marine Cadastre Layers National Scale - OCS Oil & Gas Pipelines

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Nov 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Ocean Energy Management (BOEM) (2016). BOEM BSEE Marine Cadastre Layers National Scale - OCS Oil & Gas Pipelines [Dataset]. https://koordinates.com/layer/15435-boem-bsee-marine-cadastre-layers-national-scale-ocs-oil-gas-pipelines/
    Explore at:
    dwg, kml, mapinfo tab, geopackage / sqlite, mapinfo mif, geodatabase, shapefile, csv, pdfAvailable download formats
    Dataset updated
    Nov 16, 2016
    Dataset provided by
    Bureau of Ocean Energy Managementhttp://www.boem.gov/
    Federal government of the United Stateshttp://www.usa.gov/
    Authors
    US Bureau of Ocean Energy Management (BOEM)
    Area covered
    Description

    This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.

    © MarineCadastre.gov This layer is a component of BOEMRE Layers.

    This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.

    For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov

    The REST services for National Level Data can be found here: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer

    REST services for regional level data can be found by clicking on the region of interest from the following URL: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE

    Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL: http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx

    Currently the following layers are available from this REST location:

    OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.

    OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.

    OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.

    Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.

    BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.

    BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.

    Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.

    Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip

    BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest. http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.

    BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to individual Official Protraction Diagrams and are not uniquely numbered. Only the most recently published paper or pdf

  12. Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York (NPS, GRD, GRI, GATE, GATE digital map) adapted from a Rutgers University Institute of Marine and Coastal Sciences unpublished digital data by Psuty, N.P., McLoughlin, S.M., Schmelz, W. and Spahn, A. (2014) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-pre-hurricane-sandy-geomorphological-gis-map-of-the-gateway-national-r
    Explore at:
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Sandy Hook, Staten Island, New York, Jamaica Bay
    Description

    **THIS NEWER 2016 DIGITAL MAP REPLACES THE OLDER 2014 VERSION OF THE GRI GATE Geomorphological-GIS data. The Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gate_geomorphology.gdb), a 10.1 ArcMap (.MXD) map document (gate_geomorphology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geomorphology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gate_gis_readme.pdf). Please read the gate_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gate_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gate_pre-sandy_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.08 meters or 16.67 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  13. a

    Marine Highways

    • hub.arcgis.com
    • geodata.bts.gov
    • +3more
    Updated Jul 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2018). Marine Highways [Dataset]. https://hub.arcgis.com/datasets/usdot::marine-highways/about
    Explore at:
    Dataset updated
    Jul 1, 2018
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Area covered
    Description

    The Marine Highways dataset was created on June 15, 2016 and was updated on September 10, 2025 by the U.S. Maritime Administration (MARAD) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The United States Marine Highway Program is a Maritime Administration-led program to expand the use of our Nation's navigable waterways to relieve landside congestion, reduce air emissions, and generate other public benefits by increasing the efficiency of the surface transportation system (https://www.maritime.dot.gov/grants/marine-highways/marine-highway). This dataset contains the locations of all 35 maritime routes that have been designated as Marine Highways by the Secretary of the U.S. Department of Transportation. Routes included in this dataset are diagrammatic and may not depict all waterways and port connectors that are considered to be part of the U.S. Marine Highway System. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529036

  14. d

    Data from: Geographic Locations of Seabed Sediment Samples from the...

    • search.dataone.org
    • data.usgs.gov
    • +3more
    Updated Feb 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leslie B. Gallea (2018). Geographic Locations of Seabed Sediment Samples from the Stellwagen Bank National Marine Sanctuary Region (SB_SEDSAMPLES Shapefile) [Dataset]. https://search.dataone.org/view/1c719594-465d-47c1-bc48-0457150c9078
    Explore at:
    Dataset updated
    Feb 1, 2018
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Leslie B. Gallea
    Time period covered
    Jan 1, 1993 - Jan 1, 2004
    Area covered
    Variables measured
    FID, Mud, Quad, Year, Shape, Latitude, 1_phi_siz, 2_phi_siz, 3_phi_siz, 4_phi_siz, and 27 more
    Description

    The U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region from 1993 to 2004. The mapped area is approximately 3,700 square km (1,100 square nm) in size and was subdivided into 18 quadrangles. Several series of sea floor maps of the region based on multibeam sonar surveys have been published. In addition, 2,628 seabed sediment samples were collected and analyzed and approximately 10,600 still photographs of the seabed were acquired during the project. These data provide the basis for scientists, policymakers, and managers for understanding the complex ecosystem of the sanctuary region and for monitoring and managing its economic and natural resources.

  15. Spatial Access Priority Mapping (SAPM) with Fishers: A Quantitative GIS...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katherine L. Yates; David S. Schoeman (2023). Spatial Access Priority Mapping (SAPM) with Fishers: A Quantitative GIS Method for Participatory Planning [Dataset]. http://doi.org/10.1371/journal.pone.0068424
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Katherine L. Yates; David S. Schoeman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spatial management tools, such as marine spatial planning and marine protected areas, are playing an increasingly important role in attempts to improve marine management and accommodate conflicting needs. Robust data are needed to inform decisions among different planning options, and early inclusion of stakeholder involvement is widely regarded as vital for success. One of the biggest stakeholder groups, and the most likely to be adversely impacted by spatial restrictions, is the fishing community. In order to take their priorities into account, planners need to understand spatial variation in their perceived value of the sea. Here a readily accessible, novel method for quantitatively mapping fishers’ spatial access priorities is presented. Spatial access priority mapping, or SAPM, uses only basic functions of standard spreadsheet and GIS software. Unlike the use of remote-sensing data, SAPM actively engages fishers in participatory mapping, documenting rather than inferring their priorities. By so doing, SAPM also facilitates the gathering of other useful data, such as local ecological knowledge. The method was tested and validated in Northern Ireland, where over 100 fishers participated in a semi-structured questionnaire and mapping exercise. The response rate was excellent, 97%, demonstrating fishers’ willingness to be involved. The resultant maps are easily accessible and instantly informative, providing a very clear visual indication of which areas are most important for the fishers. The maps also provide quantitative data, which can be used to analyse the relative impact of different management options on the fishing industry and can be incorporated into planning software, such as MARXAN, to ensure that conservation goals can be met at minimum negative impact to the industry. This research shows how spatial access priority mapping can facilitate the early engagement of fishers and the ready incorporation of their priorities into the decision-making process in a transparent, quantitative way.

  16. H

    Marine Obstructions

    • opendata.hawaii.gov
    • kauai-open-data-kauaigis.hub.arcgis.com
    • +2more
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2024). Marine Obstructions [Dataset]. https://opendata.hawaii.gov/dataset/marine-obstructions
    Explore at:
    ogc wms, csv, arcgis geoservices rest api, html, kml, ogc wfs, zip, pdf, geojsonAvailable download formats
    Dataset updated
    Jun 30, 2024
    Dataset provided by
    Hawaii Statewide GIS Program
    Authors
    Office of Planning
    Description

    [Metadata] Obstructions located in marine waters within the vicinity of the main Hawaiian Islands and recorded on the nautical charts. Source, NOAA raster nautical charts, 2002. June 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of a 2016 GIS database conversion and were no longer needed. For additional information, please refer to metadata at https://files.hawaii.gov/dbedt/op/gis/data/obstructions.pdf or contact Hawaii Statewide GIS Program, Office of Planning, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  17. d

    Marine Valuation Workgroup GIS

    • search.dataone.org
    • knb.ecoinformatics.org
    Updated Jan 6, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCEAS 12194: Fleishman: Valuation of marine ecosystem services; National Center for Ecological Analysis and Synthesis; Tim O'Higgins (2015). Marine Valuation Workgroup GIS [Dataset]. http://doi.org/10.5063/AA/nceas.956.1
    Explore at:
    Dataset updated
    Jan 6, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    NCEAS 12194: Fleishman: Valuation of marine ecosystem services; National Center for Ecological Analysis and Synthesis; Tim O'Higgins
    Time period covered
    Jan 1, 1999
    Area covered
    Description

    This is GIS data set covering two California estuaries, San Francisco Bay and Ballona Wetlands. The data are anticipated land use covers following restoration programs. The SF Bay dataset comes from the Ecoatlas produced by SFEI and is based on a published scenario for future use. The Ballona wetlands data is based on the National Wetlands Inventory and restoration plans for the estuary

  18. BOEM BSEE Marine Cadastre Layers National Scale - OCS Drilling Platforms

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Nov 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Ocean Energy Management (BOEM) (2016). BOEM BSEE Marine Cadastre Layers National Scale - OCS Drilling Platforms [Dataset]. https://koordinates.com/layer/15434-boem-bsee-marine-cadastre-layers-national-scale-ocs-drilling-platforms/
    Explore at:
    geopackage / sqlite, mapinfo mif, kml, mapinfo tab, csv, dwg, pdf, shapefile, geodatabaseAvailable download formats
    Dataset updated
    Nov 16, 2016
    Dataset provided by
    Bureau of Ocean Energy Managementhttp://www.boem.gov/
    Federal government of the United Stateshttp://www.usa.gov/
    Authors
    US Bureau of Ocean Energy Management (BOEM)
    Area covered
    Description

    Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.

    © MarineCadastre.gov This layer is a component of BOEMRE Layers.

    This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.

    For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov

    The REST services for National Level Data can be found here: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer

    REST services for regional level data can be found by clicking on the region of interest from the following URL: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE

    Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL: http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx

    Currently the following layers are available from this REST location:

    OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.

    OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.

    OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.

    Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.

    BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.

    BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.

    Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.

    Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip

    BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest. http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.

    BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to individual Official Protraction Diagrams and are not uniquely numbered. Only the most recently published paper or pdf versions of the OPDs or LMs or SOBDs should be used for official or legal purposes. The pdf

  19. H

    Marine Unexploded Ordnance

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +2more
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2024). Marine Unexploded Ordnance [Dataset]. https://opendata.hawaii.gov/dataset/marine-unexploded-ordnance
    Explore at:
    pdf, ogc wms, kml, html, zip, geojson, csv, arcgis geoservices rest api, ogc wfsAvailable download formats
    Dataset updated
    Jun 30, 2024
    Dataset provided by
    Hawaii Statewide GIS Program
    Authors
    Office of Planning
    Description

    [Metadata] Unexploded ordnance locations in marine waters within the vicinity of the main Hawaiian Islands and recorded on the nautical charts. Source, NOAA raster nautical charts, 2002. June 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of a 2016 GIS database conversion and were no longer needed. For additional information, please refer to metadata at https://files.hawaii.gov/dbedt/op/gis/data/unexploded_ordnance.pdf or contact Hawaii Statewide GIS Program, Office of Planning, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  20. FWS NWRS Marine Protected Areas

    • gis.data.alaska.gov
    • gis.data.mass.gov
    • +4more
    Updated Jun 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2017). FWS NWRS Marine Protected Areas [Dataset]. https://gis.data.alaska.gov/datasets/fws::fws-nwrs-marine-protected-areas
    Explore at:
    Dataset updated
    Jun 6, 2017
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Provides a dataset of Marine Protected Areas (MPAs) within the U.S. Fish and Wildlife Service National Wildlife Refuges. The dataset includes polygons for each National Wildlife Refuge with a distinction between area that are Marine/Estuarine and those that are Terrestrial. This dataset is a dissolved version of the USFWS Marine Protected Areas - Parcels dataset.The Marine Protected Areas Center is a partnership between the National Oceanographic and Atmospheric Administration (NOAA) and the Department of the Interior (DOI) to support effective MPA management, including data on the status and trends for MPAs in the U.S. Learn more about MPAs by visiting https://marineprotectedareas.noaa.gov/.Data Set Contact: U.S. Fish and Wildlife Service Natural Resource Program Center, GIS Team Lead, richard_easterbrook@fws.gov

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Younes Hamdani; Rémy thibaud; Christophe Claramunt (2020). A hybrid data model for dynamic GIS : application to marine geomorphological dynamics [Dataset]. http://doi.org/10.6084/m9.figshare.12121386.v1
Organization logoOrganization logo

Data from: A hybrid data model for dynamic GIS : application to marine geomorphological dynamics

Related Article
Explore at:
application/x-rarAvailable download formats
Dataset updated
Sep 24, 2020
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Younes Hamdani; Rémy thibaud; Christophe Claramunt
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Abstract : The search for the most appropriate GIS data model to integrate, manipulate and analyse spatio-temporal data raises several research questions about the conceptualisation of geographic spaces. Although there is now a general consensus that many environmental phenomena require field and object conceptualisations to provide a comprehensive GIS representation, there is still a need for better integration of these dual representations of space within a formal spatio-temporal database. The research presented in this paper introduces a hybrid and formal dual data model for the representation of spatio-temporal data. The whole approach has been fully implemented in PostgreSQL and its spatial extension PostGIS, where the SQL language is extended by a series of data type constructions and manipulation functions to support hybrid queries. The potential of the approach is illustrated by an application to underwater geomorphological dynamics oriented towards the monitoring of the evolution of seabed changes. A series of performance and scalability experiments are also reported to demonstrate the computational performance of the model.Data Description : The data set used in our research is a set of bathymetric surveys recorded over three years from 2009 to 2011 as Digital Terrain Models (DTM) with 2m grid spacing. The first survey was carried out in February 2009 by the French hydrographic office, the second one was recorded on August-September 2010 and the third in July 2011, both by the “Institut Universitaire Européen de la Mer”.

Search
Clear search
Close search
Google apps
Main menu