The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This application is a list of capstone projects for students in the Penn State Geodesign Masters in Professional Studies program.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Gis. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Gis. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
Hi, I'm Patrick,I initially pursued an undergraduate degree in Computer Science because I wanted to make video games; however, after taking an Environmental Science course, I wanted to see if there was a way I could study both. This led me to GIS and I made that my specialism, doing a Masters and later PhD on the subject.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Masters Of Science In Gis Technology. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Masters Of Science In Gis Technology. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This item is in mature support and is no longer updated. Available for historical reference only.This dataset contains the campus boundaries of Colleges and Universities of New Jersey mapped by parcel boundaries.The Colleges and Universities dataset is composed of any type of Post Secondary Education such as: colleges, universities, technical schools, trade schools, business schools, satellite (branch) campuses, etc. that grant First Professional, Associate, Bachelors, Masters, or Doctoral degrees. Secondary education facilities, Administrative offices, or Post Secondary Education facilities that are non degree granting schools are intended to be excluded from this dataset, but a few may be included. All data is non license restricted data that has been added from TGS research.
SMP Environment Designations
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geography (Gis Specialty). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geography (Gis Specialty). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The shared archived combined in Supplementary Datasets represent the actual databases used in the investigation considered in two papers:
Meteorological conditions affecting black vulture (Coragyps atratus) soaring behavior in the southeast of Brazil: Implications for bird strike abatement (in submission)
Remote sensing applications for abating the aircraft-bird strike risks in the southeast of Brazil (Human-Wildlife Interactions Journal, in print)
The papers were based on my Master’s thesis defended in 2016 in the Institute of Biology of the University of Campinas (UNICAMP) in partial fulfilment of the requirements for the degree of Master in Ecology. Our investigation was devoted to reducing the risk of aircraft collision with Black vultures. It had two parts considered in these two papers. In the first one we studied the relationship between soaring activity of Black vultures and meteorological characteristics. In the second one we explored the dependence of soaring activity of vultures on superficial and anthropogenic characteristics. The study was implemented within surroundings of two airports in the southeast of Brazil taken as case studies. We developed the methodological approaches combining application of GIS and remote sensing technologies for data processing, which were used as the main research instrument. By dint of them we joined in the georeferenced databases (shapefiles) the data of bird's observation and three types of environmental factors: (i) meteorological characteristics collected together with the bird’s observation, (ii) superficial parameters (relief and surface temperature) obtained from the products of ASTER imagery; (iii) parameters of surface covering and anthropogenic pressure obtained from the satellite images of high resolution. Based on the analyses of the georeferenced databases, the relationship between soaring activity of vultures and environmental factors was studied; the behavioral patterns of vultures in soaring flight were revealed; the landscape types highly attractive for this species and forming the increased concentration of birds over them were detected; the maps giving a numerical estimation of hazard of bird strike events over the airport vicinities were constructed; the practical recommendations devoted to decrease the risk of collisions with vultures and other bird species were formulated.
This archive contains all materials elaborated and used for the study, including the GIS database for two papers, remote sensing data, and Microsoft Excel datasets. You can find the description of supplementary files in the Description of Supplementary Dataset.docx. The links on supplementary files and their attribution to the text of papers are considered in the Attribution to the text of papers.docx. The supplementary files are in the folders Datasets, GIS_others, GIS_Raster, GIS_Shape.
For any question please write me on this email: natalieenov@gmail.com
Natalia Novoselova
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Civil Engineering; Gis Graduate Program. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Civil Engineering; Gis Graduate Program. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
The Narcotic Treatment Program Master List contains a list of all state-licensed and certified narcotic treatment programs. The Master List contains vital information for each program listed and additional details, such as the program’s address and contact information, total capacity, hours of operation and program director and medical director.
K.C. Shoreline Management Master Program. Related to SAO wetlands and FEMA floodpln (has boolean attributes floodpln and wetlands).
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geospatial Information Science (Gis) And Technology. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geospatial Information Science (Gis) And Technology. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Remote Sensing/Gis. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Remote Sensing/Gis. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Gis (Also Has Master'S In Gis, 2013). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Gis (Also Has Master'S In Gis, 2013). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Applied Geography (Geography - Gis Major). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Applied Geography (Geography - Gis Major). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This dataset contains the campus boundaries of Colleges and Universities of New Jersey mapped by parcel boundaries.The Colleges and Universities dataset is composed of any type of Post Secondary Education such as: colleges, universities, technical schools, trade schools, business schools, satellite (branch) campuses, etc. that grant First Professional, Associate, Bachelors, Masters, or Doctoral degrees. Secondary education facilities, Administrative offices, or Post Secondary Education facilities that are non degree granting schools are intended to be excluded from this dataset, but a few may be included. All data is non license restricted data that has been added from TGS research. May 2025:Updated list with new Colleges and Universities, additional branch campuses, name changes, and closures. based on the OSHE list of accredited institutions. A parcel based approach was employed to accurately reflect changes in campus boundaries.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Forest Engineering (Gis). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Forest Engineering (Gis). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
Pend Oreille County Shoreline Master Program Designations
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geographic Information Science (Gis). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geographic Information Science (Gis). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).