Facebook
Twitterhttps://durhamnc.maps.arcgis.com/sharing/rest/content/items/9030dd38e1604f868db7c50fbded83b8/datahttps://durhamnc.maps.arcgis.com/sharing/rest/content/items/9030dd38e1604f868db7c50fbded83b8/data
This GIS dataset provides a comprehensive spatial representation of higher education institutions within Durham, North Carolina. This dataset serves as a valuable resource for urban planning, demographic analysis, and educational resource management, helping users visualize the distribution of educational facilities and their proximity to other key features.
Facebook
TwitterThe Kansas Master Ground-water Well Inventory (MWI) is a central repository that imports and links together the State's primary ground-water well data sets- KDHE's WWC5, KDA-DWR's WIMAS, and KGS' WIZARD into a single, online source. The most "accurate" of the common source fields are used to represent the well sites, for example- GPS coordinates if available are used over other methods to locate a well. The MWI maintains the primary identification tags to allow specific well records to be linked back to the original data sources.This mapper is managed by the Kansas Geological Survey. For more information about the data, please see the Groundwater Master Well Inventory page.
Facebook
TwitterTable View of Master_OP_EXP - Budgets and Actuals from FY 2016, 2017, 2018, 2019, and FYTD 2020. This View is the data source for Expense Dashboards. Update Schedule: Once per Month.
Facebook
TwitterUsers should note that there is a shift in the position of quad sheet boundaries between NAD27 and NAD83 and should choose the appropriate quad boundaries for their mapping needs.
Facebook
TwitterTable View of Master_OP_REV - including Budgets and Actuals from FY 2016, 2017, 2018, 2019, and FYTD 2020. This View is the data source for Revenue Dashboards. Update schedule: Once per Month.
Facebook
TwitterThis layer shows total population count by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population that are considered dependent (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
TwitterTerms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).
This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.
Layers and Tables:
The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).
The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.
Production
Data Universe
Public Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.
All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.
These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.
Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.
A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).
Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.
Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.
Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. Those highlighted (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) represent regional or joint boards that will not be mapped, because their individual municipal service areas are included in this datalayer.
PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.
Methodologies and Data Sources
Several methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.
Verification Process
Small-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.
Sources of information for estimated drinking water service areas
The following information was used to develop estimated drinking water service areas:
EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of
Facebook
TwitterTown of Monson, MA GIS Viewer
Facebook
TwitterTown of Milford, MA GIS Viewer
Facebook
TwitterCity of Haverhill, MA GIS Viewer
Facebook
TwitterUpdated Continually
Facebook
TwitterTown of Winchester, MA GIS Viewer
Facebook
TwitterThis webGIS app presents many data layers available from MassGIS in addition to locally produced data. Thematically linked data have been grouped into various "quick maps" for easy viewing, but all layers may be displayed alongside any others. Users can also export maps to PNG format. Proper support for mobile devices is planned for the near future.
Facebook
TwitterThis is a map service displaying a graticule (latitude/longitude lines) in the Arctic. It can be used as an overlay alongside other layers for general reference.Map projection: WGS84 Arctic Polar Stereographic; standard parallel of 71 degrees; EPSG:3995; outer edge at 50 degrees north.Note: this will not display in the correct projection if you click on the thumbnail or choose "Add to Map". For a combined ArcGIS Online map displaying this service in Arctic projection along with other useful reference layers, please see: https://noaa.maps.arcgis.com/home/item.html?id=94f14eb0995e4bfc9d2439fc868345da
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is a simple map service showing latitude/longitude lines that can be used as an overlay along with other layers for reference.Spatial reference: GCS_WGS_1984.This map layer is used in NOAA's Data in the Classroom module(s).Data in the Classroom is an online curriculum to foster data literacy. With NOAA’s Data in the Classroom, students use historical and real-time NOAA data to explore today’s most pressing environmental issues. Each of the modules addresses research questions, includes stepped levels of engagement and builds students’ abilities to understand, interpret, and think critically about data. The modules available include:Investigating El NiñoInvestigating Sea LevelInvestigating Coral BleachingMonitoring Estuarine Water QualityUnderstanding Ocean & Coastal AcidificationVisit Data in the Classroom for more information.All Data in the Classroom modules follow guiding principles found in the Next Generation Science Standards (NGSS)* and Common Core State Standards.*NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Facebook
TwitterClimate plays a major role in determining the distribution of plants and animals. Bioclimatology, the study of climate as it affects and is affected by living organisms, is key to understanding the patterns of forests and deserts on the landscape, where productive agricultural lands may be found, and how changes in the climate will affect rare species. This layer is part of the Ecophysiographic Project and is one of the four input layers used to create the World Ecological Land Units Map. This layer provides access to a 250m cell-sized raster with a bioclimatic stratification. The source dataset was a 30-arcsecond resolution raster (equivalent to 0.86 km2 at the equator or about a 920m pixel size). The layer has the following attributes: Temperature Description - Seven classes based on the number of growing degree days (the monthly mean temperature multiplied by number of days in the month summed for all months). The 1950 to 2000 monthly average temperature was used to calculate growing degree days. Values in this field and associated number of growing degree days are: Temperature DescriptionGrowing Degree DaysVery Hot9,000 – 13,500Hot7,000 – 9,000Warm4,500 – 7,000Cool2,500 – 4,500Cold1,000 – 2,500Very Cold300 – 1,000Arctic0 - 300 Aridity Description - Six classes based on an index of aridity calculated by dividing precipitation by evapotranspiration. Precipitation and evapotranspiration are average values from 1950 to 2000. Aridity DescriptionAridity IndexVery Wet1.5 – 70Wet1.0 – 1.5Moist0.6 – 1.0Semi-dry0.3 – 0.6Dry0.1 – 0.3Very Dry0.01 – 0.1 Bioclimate Class - a 2-part description that combines the value of the Temperature Description field and the Aridity Description field. The alias for this field is ELU Bioclimate Reclass. This layer was created by modifying the dataset documented in the publication: Metzger and others. 2012. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Dataset SummaryAnalysis: Optimized for analysis What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. Restricted single source analysis means this layer has size constraints for analysis and it is not recommended for use with other layers in multisource analysis. This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. A service is available providing access to the data table associated with this layer. The data table services can be used by developers to quickly and efficiently query the data and to create custom applications. For more information see the World Ecophysiographic Tables. Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See the Living Atlas Imagery Layers Optimized for Analysis Group for a complete list of imagery layers optimized for analysis. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks. The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group. The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Facebook
TwitterAccess the file geodatabase source data in SC State Plane coordinate system
Facebook
TwitterThis layer provides slope values calculated from elevation data. The values are integer and represent the angle of the downward sloping terrain from 0 (flat) to 90 degrees (vertical). The layer is designed for use in landscape-scale analysis.Dataset SummaryThis layer provides access to a 250m cell-sized raster of slope in degrees. The layer was created with the ArcGIS Slope Tool using the GMTED elevation layer as an input. The layer was created in 2014 by Esri.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterMassGIS Level 3 Parcel Data: Data Fiscal Year: Aquinnah 2019, Chilmark 2021, Edgartown 2021, Gosnold 2015, Oak Bluffs 2021, Tisbury 2021, West Tisbury 2021.Building Info Table: Acquired by MVC from Town Assessors in FY20.Downloaded from MassGIS,, this polygon file represents the parcel bounds for the 7 towns in Dukes County MA (Aquinnah, Chilmark, Edgartown, Godnold, Oak Bluffs, Tisbury, West Tisbury). Each town has their own parcel data consultant and then the data are forwarded to MassGIS for final processing. All data comply with the MassGIS Level 3 Parcel Data Standard. This file geodatabase only includes the TaxPar feature class and Assess table for each town. All TaxPar feature classes were appended into one feature class (Parcels_duk) by the MVC.Each assess table is utilized in that town's respective relationship join (1 to Many) for linking the parcel polygon to the related record(s) in the Assess table. The Assess Table contains info about ownership and assessed values. This is not a detailed building table. If there are multiple owners associated with a property, then the Assess table will have multiple records for that property/parcel (such as for condo parcels).Each building table is utilized in that town's respective relationship join (1 to Many) for linking the parcel polygon to the related record(s) in the Bldg table. The Bldg (building) table contains info about each building on the parcel (such as number of bedrooms, number of bathrooms, the living area square footage, etc.). NOTES of CAUTION: The Living Area Square Footage may not represent the exact same thing in each town. As a generalization, Living Area is interior space that is heated. Regarding West Tisbury, their building table only contains info for one building on the parcel. It is uncertain at this time if the info is the most recent, most primary, or some kind of summarization where multiple buildings on a parcel exist.The field of [assess_mYB] represents the Minimum/Earliest Year Built for any building on the parcel and is appended to the TaxPar feature class based on an analysis of the info provided in the building table. This field [assess_mYB] is utilized in the Historic Structures App found in ArcGIS OnLine.
Facebook
TwitterZoning designations of land use within the unincorporated areas of Napa County.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://durhamnc.maps.arcgis.com/sharing/rest/content/items/9030dd38e1604f868db7c50fbded83b8/datahttps://durhamnc.maps.arcgis.com/sharing/rest/content/items/9030dd38e1604f868db7c50fbded83b8/data
This GIS dataset provides a comprehensive spatial representation of higher education institutions within Durham, North Carolina. This dataset serves as a valuable resource for urban planning, demographic analysis, and educational resource management, helping users visualize the distribution of educational facilities and their proximity to other key features.