100+ datasets found
  1. U

    Points for Maps: ArcGIS layer providing the site locations and the...

    • data.usgs.gov
    • dataone.org
    • +2more
    Updated Nov 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Prinos; Joann Dixon (2021). Points for Maps: ArcGIS layer providing the site locations and the water-level statistics used for creating the water-level contour maps [Dataset]. http://doi.org/10.5066/F7DJ5CP8
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Scott Prinos; Joann Dixon
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Oct 1, 1989 - Sep 30, 2009
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually hig ...

  2. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhu, Guang-Fu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Liu, Jie
    Zhu, Guang-Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  3. a

    Data from: Means of Transportation to Work

    • data-usdot.opendata.arcgis.com
    Updated Oct 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2021). Means of Transportation to Work [Dataset]. https://data-usdot.opendata.arcgis.com/datasets/usdot::means-of-transportation-to-work/about
    Explore at:
    Dataset updated
    Oct 7, 2021
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Area covered
    Description

    The Means of Transportation to Work dataset was compiled using information from December 31, 2023 and updated December 12, 2024 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The Means of Transportation to Work table from the 2023 American Community Survey (ACS) 5-year estimates was joined to 2023 tract-level geographies for all 50 States, District of Columbia and Puerto Rico provided by the Census Bureau. A new file was created that combines the demographic variables from the former with the cartographic boundaries of the latter. The national level census tract layer contains data on the number and percentage of commuters (workers 16 years and over) that used various transportation modes to get to work.

  4. f

    Data from: Integrating geographical information systems, remote sensing, and...

    • tandf.figshare.com
    docx
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Armstrong Manuvakola Ezequias Ngolo; Teiji Watanabe (2023). Integrating geographical information systems, remote sensing, and machine learning techniques to monitor urban expansion: an application to Luanda, Angola [Dataset]. http://doi.org/10.6084/m9.figshare.20401962.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Armstrong Manuvakola Ezequias Ngolo; Teiji Watanabe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Angola, Luanda
    Description

    According to many previous studies, application of remote sensing for the complex and heterogeneous urban environments in Sub-Saharan African countries is challenging due to the spectral confusion among features caused by diversity of construction materials. Resorting to classification based on spectral indices that are expected to better highlight features of interest and to be prone to unsupervised classification, this study aims (1) to evaluate the effectiveness of index-based classification for Land Use Land Cover (LULC) using an unsupervised machine learning algorithm Product Quantized K-means (PQk-means); and (2) to monitor the urban expansion of Luanda, the capital city of Angola in a Logistic Regression Model (LRM). Comparison with state-of-the-art algorithms shows that unsupervised classification by means of spectral indices is effective for the study area and can be used for further studies. The built-up area of Luanda has increased from 94.5 km2 in 2000 to 198.3 km2 in 2008 and to 468.4 km2 in 2018, mainly driven by the proximity to the already established residential areas and to the main roads as confirmed by the logistic regression analysis. The generated probability maps show high probability of urban growth in the areas where government had defined housing programs.

  5. Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida (NPS, GRD, GRI, EVER, EVER digital map) adapted from Florida Geological Survey Open File Map Series maps by Green, Campbell, Scott, Means and Arthur (1995, 1996, 1997, 1998 and 1999), and Open-File Report map by Scott (2001), and U.S. Geological Survey Bulletin map by Bergendahl (1956), Open-File Report map by McCartan and Moy (1995), and Water-Resources maps by Causaras, Reese and Cunningham (1985, 1986 and 2000) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-everglades-national-park-and-vicinity-florida-nps-grd-gri-ever
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Florida
    Description

    The Digital Geologic-GIS Map of Everglades National Park and Vicinity, Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geology_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geology_metadata.txt or ever_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:675,000 and United States National Map Accuracy Standards features are within (horizontally) 342.9 meters or 1125 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  6. a

    OCD NGGS Schema

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jlivengood_EMNRD (2025). OCD NGGS Schema [Dataset]. https://hub.arcgis.com/maps/16b51c964b7846f7981bcb83c4633523
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset authored and provided by
    jlivengood_EMNRD
    Area covered
    Earth
    Description

    Empty geodatabase schema for GIS as-built submissions of new gathering pipeline or natural gas gathering system as defined in 19.15.28.9 NMAC.“Natural gas gathering system” means the gathering pipelines and associated facilities that compress, dehydrate, or treat natural gas after the custody transfer point and ending at the connection point with a natural gas processing plant or transmission or distribution system. 19.15.28.7 NMAC.“Gathering pipeline” means a pipeline that gathers natural gas within a natural gas gathering system. 19.15.28.7 NMAC.“Release” No later than July 1st of each year, the operator shall also file with the division an updated system map GIS digitally formatted as-built map of its gathering pipeline or natural gas gathering system, which shall include a GIS layer that identifies the date, location and volume of vented or flared natural gas of each emergency, malfunction and release reported to the division since 19.15.28 NMAC became applicable to the pipeline or system. System Maps will be submitted to OCD in the Esri file geodatabase format.Do not submit Esri shapefile, personal geodatabase, or other raw formats.Do not submit GIS files that were converted to a file geodatabase format without following the required database template.File Geodatabase and feature layers must use an underscore, rather than a period or space, when naming files. (ex. FacID_Date_NGGS)

  7. r

    GIS-based Time model. Gothenburg, 1960-2015

    • researchdata.se
    • resodate.org
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ioanna Stavroulaki; Lars Marcus; Meta Berghauser Pont; Ehsan Abshirini; Jan Sahlberg; Alice Örnö Ax (2025). GIS-based Time model. Gothenburg, 1960-2015 [Dataset]. http://doi.org/10.5878/ma55-r589
    Explore at:
    (861571), (104074198)Available download formats
    Dataset updated
    Sep 12, 2025
    Dataset provided by
    Chalmers University of Technology
    Authors
    Ioanna Stavroulaki; Lars Marcus; Meta Berghauser Pont; Ehsan Abshirini; Jan Sahlberg; Alice Örnö Ax
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - Jan 1, 2015
    Area covered
    Sweden, Västra Götaland County, Gothenburg
    Description

    The GIS-based Time model of Gothenburg aims to map the process of urban development in Gothenburg since 1960 and in particular to document the changes in the spatial form of the city - streets, buildings and plots - through time. Major steps have in recent decades been taken when it comes to understanding how cities work. Essential is the change from understanding cities as locations to understanding them as flows (Batty 2013)1. In principle this means that we need to understand locations (or places) as defined by flows (or different forms of traffic), rather than locations only served by flows. This implies that we need to understand the built form and spatial structure of cities as a system, that by shaping flows creates a series of places with very specific relations to all other places in the city, which also give them very specific performative potentials. It also implies the rather fascinating notion that what happens in one place is dependent on its relation to all other places (Hillier 1996)2. Hence, to understand the individual place, we need a model of the city as a whole.

    Extensive research in this direction has taken place in recent years, that has also spilled over to urban design practice, not least in Sweden, where the idea that to understand the part you need to understand the whole is starting to be established. With the GIS-based Time model for Gothenburg that we present here, we address the next challenge. Place is not only something defined by its spatial relation to all other places in its system, but also by its history, or its evolution over time. Since the built form of the city changes over time, often by cities growing but at times also by cities shrinking, the spatial relation between places changes over time. If cities tend to grow, and most often by extending their periphery, it means that most places get a more central location over time. If this is a general tendency, it does not mean that all places increase their centrality to an equal degree. Depending on the structure of the individual city’s spatial form, different places become more centrally located to different degrees as well as their relative distance to other places changes to different degrees. The even more fascinating notion then becomes apparent; places move over time! To capture, study and understand this, we need a "time model".

    The GIS-based time model of Gothenburg consists of: • 12 GIS-layers of the street network, from 1960 to 2015, in 5-year intervals • 12 GIS-layers of the buildings from 1960 to 2015, in 5-year intervals - Please note that this dataset has been moved to a separate catalog post (https://doi.org/10.5878/t8s9-6y15) and unpublished due to licensing restrictions on its source dataset. • 12 GIS- layers of the plots from1960 to 2015, in 5-year intervals

    In the GIS-based Time model, for every time-frame, the combination of the three fundamental components of spatial form, that is streets, plots and buildings, provides a consistent description of the built environment at that particular time. The evolution of three components can be studied individually, where one could for example analyze the changing patterns of street centrality over time by focusing on the street network; or, the densification processes by focusing on the buildings; or, the expansion of the city by way of occupying more buildable land, by focusing on plots. The combined snapshots of street centrality, density and land division can provide insightful observations about the spatial form of the city at each time-frame; for example, the patterns of spatial segregation, the distribution of urban density or the patterns of sprawl. The observation of how the interrelated layers of spatial form together evolved and transformed through time can provide a more complete image of the patterns of urban growth in the city.

    The Time model was created following the principles of the model of spatial form of the city, as developed by the Spatial Morphology Group (SMoG) at Chalmers University of Technology, within the three-year research project ‘International Spatial Morphology Lab (SMoL)’.

    The project is funded by Älvstranden Utveckling AB in the framework of a larger cooperation project called Fusion Point Gothenburg. The data is shared via SND to create a research infrastructure that is open to new study initiatives.

    1. Batty, M. (2013), The New Science of Cities, Cambridge: MIT Press.
    2. Hillier, B., (1996), Space Is the Machine. Cambridge: University of Cambridge
    • 12 GIS-layers of the street network in Gothenburg, from 1960 to 2015, in 5-year intervals. File format: shapefile (.shp), MapinfoTAB (.TAB). The coordinate system used is SWEREF 99TM, EPSG:3006.

    • 12 GIS-layers of plots in Gothenburg, from 1960 to 2015, in 5-year intervals. Only built upon plots (plots with buildings) are included. File format: shapefile (.shp), MapinfoTAB (.TAB). The coordinate system used is SWEREF 99TM, EPSG:3006.

    See the attached Technical Documentation for the description and further details on the production of the datasets. See the attached Report for the description of the related research project.

  8. a

    CT Mean Heat Index

    • hub.arcgis.com
    • gis.data.mass.gov
    Updated May 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BostonMaps (2021). CT Mean Heat Index [Dataset]. https://hub.arcgis.com/datasets/boston::canopy-change-assessment-heat-metrics?layer=1
    Explore at:
    Dataset updated
    May 12, 2021
    Dataset authored and provided by
    BostonMaps
    Area covered
    Description

    This dataset consists of summer temperature metrics for Boston, MA. These heat metrics summarize six CAPA Urban Heat Watch program temperature and heat index datasets using geographical boundaries from the Census Tract (CT) layer. Heat datasets were created by Museum of Science, Boston, and the Helmuth Lab at Northeastern University. Heat metrics are presented in the attribute table as mean values of each Heat Watch program dataset for all hexagon features. The six heat values included in this table are July 2019 temperature and heat index in degrees Fahrenheit for each of 3 1-hour periods -- 6 a.m., 3 p.m., and 7 p.m. EDT. The geographic boundaries used to summarize the heat metrics are current as of 2019.

  9. d

    Data from: Map 12: ArcGIS layer showing contours of the difference in May...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Map 12: ArcGIS layer showing contours of the difference in May Mean water levels from the water-year periods 1990 to 1999 and 2000 to 2009 (feet) [Dataset]. https://catalog.data.gov/dataset/map-12-arcgis-layer-showing-contours-of-the-difference-in-may-mean-water-levels-from-the-w
    Explore at:
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  10. f

    Data from: Uncertainties Associated with Arithmetic Map Operations in GIS

    • figshare.com
    jpeg
    Updated Aug 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JORGE K. YAMAMOTO; ANTÔNIO T. KIKUDA; GUILHERME J. RAMPAZZO; CLAUDIO B.B. LEITE (2018). Uncertainties Associated with Arithmetic Map Operations in GIS [Dataset]. http://doi.org/10.6084/m9.figshare.6991718.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Aug 22, 2018
    Dataset provided by
    SciELO journals
    Authors
    JORGE K. YAMAMOTO; ANTÔNIO T. KIKUDA; GUILHERME J. RAMPAZZO; CLAUDIO B.B. LEITE
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Arithmetic map operations are very common procedures used in GIS to combine raster maps resulting in a new and improved raster map. It is essential that this new map be accompanied by an assessment of uncertainty. This paper shows how we can calculate the uncertainty of the resulting map after performing some arithmetic operation. Actually, the propagation of uncertainty depends on a reliable measurement of the local accuracy and local covariance, as well. In this sense, the use of the interpolation variance is proposed because it takes into account both data configuration and data values. Taylor series expansion is used to derive the mean and variance of the function defined by an arithmetic operation. We show exact results for means and variances for arithmetic operations involving addition, subtraction and multiplication and that it is possible to get approximate mean and variance for the quotient of raster maps.

  11. f

    Data Paper. Data Paper

    • wiley.figshare.com
    html
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth J. Sbrocco; Paul H. Barber (2023). Data Paper. Data Paper [Dataset]. http://doi.org/10.6084/m9.figshare.3555765.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Wiley
    Authors
    Elizabeth J. Sbrocco; Paul H. Barber
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    File List bathymetry_30s.7z (MD5: dd855211bbcdee7d6862414da23d6da2) biogeo01_07_30s.7z (MD5: 396525db0abd9de2ede3d8fdeb15e8ee) biogeo08_17_30s.7z (MD5: 96c2417eed84e85f9896536b934c53e1) Monthly_Variables_30s.7z (MD5: 89016a8d17e8d8a1dddef0a121a83f5d)

         Additional high resolution raster files:
    

    Sea_Ice_30s.7z (MD5: 547d355294c530f63b9b0a73dedd2f3a)

         Low resolution MARSPEC data files:
    

    MARSPEC_2o5m.7z (MD5: 923c97d185adb0c72f158a84e2981391) MARSPEC_5m.7z (MD5: 95f7c3739c4f2889c2eff18afeffa489) MARSPEC_10m.7z (MD5: d91f3127f46f7004d116f14328bf4b71) Description Ecological niche models are widely used in terrestrial studies to address critical ecological and evolutionary questions related to past and future climate change, local adaptation and speciation, the discovery of rare endemics, and biological invasions. However the application of niche models to similar questions in marine ecosystems has lagged behind, in part due to the lack of a centralized high-resolution spatial data set representing both benthic and pelagic marine environments. Here we describe the creation of MARSPEC, a high-resolution GIS database of ocean climate layers intended for marine ecological niche modeling and other applications in marine spatial ecology. MARSPEC combines information related to topographic complexity of the seafloor with bioclimatic measures of sea surface temperature and salinity for the world ocean. We derived seven geophysical variables from a high-resolution raster grid representing depth of the seafloor (bathymetry) to characterize six facets of topographic complexity (east-west and north-south components of aspect, slope, concavity of the seafloor, and plan and profile curvature) and distance from shore. We further derived 10 bioclimatic variables describing the annual mean, range, variance and extreme values for temperature and salinity from long-term monthly climatological means obtained from remotely sensed and in situ oceanographic observations. All variables were clipped to a common land mask, interpolated to a nominal 1-km (30 arc-second) grid, and converted to an ESRI raster grid file format compatible with popular GIS programs. MARSPEC is a 10-fold improvement in spatial resolution over the next-best data set (Bio-ORACLE) and is the only high-resolution global marine data set to combine variables from the benthic and pelagic environments into a single database. Additionally, we provide the monthly climatological layers used to derive the bioclimatic variables, allowing users to calculate equivalent MARSPEC variables from anomaly data for past and future climate scenarios. A detailed description of GIS processing steps required to calculate the MARSPEC variables can be found in the metadata.

          Key words: climate change; ecological niche modeling; GIS; marine spatial ecology; ocean climate; salinity; sea surface temperature; species distribution modeling.
    
  12. H

    Developing Historical Geographic Information Systems for Japan

    • dataverse.harvard.edu
    Updated Mar 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lex Berman; Jian Zhang (2017). Developing Historical Geographic Information Systems for Japan [Dataset]. http://doi.org/10.7910/DVN/MZANN5
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2017
    Dataset provided by
    Harvard Dataverse
    Authors
    Lex Berman; Jian Zhang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Japan
    Description

    The historical GIS layers for the Tokugawa Period (circa 1664 and 1820) were developed for presentation at CEAL, Japanese Librarians Meeting, 2004. This paper will briefly outline existing examples of Japan Historical GIS, the methodology used to develop our demonstration GIS, and the means of searching the data online.

  13. r

    GIS-based Time model. Gothenburg, 1960-2016_2

    • researchdata.se
    • data.europa.eu
    Updated Sep 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ioanna Stavroulaki; Lars Marcus; Meta Berghauser Pont; Ehsan Abshirini; Jan Sahlberg; Alice Örnö Ax (2025). GIS-based Time model. Gothenburg, 1960-2016_2 [Dataset]. http://doi.org/10.5878/ke11-je22
    Explore at:
    Dataset updated
    Sep 12, 2025
    Dataset provided by
    Chalmers University of Technology
    Authors
    Ioanna Stavroulaki; Lars Marcus; Meta Berghauser Pont; Ehsan Abshirini; Jan Sahlberg; Alice Örnö Ax
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - Dec 31, 2015
    Area covered
    Gothenburg, Sweden, Västra Götaland County
    Description

    The GIS-based Time model of Gothenburg aims to map the process of urban development in Gothenburg since 1960 and in particular to document the changes in the spatial form of the city - streets, buildings and plots - through time. Major steps have in recent decades been taken when it comes to understanding how cities work. Essential is the change from understanding cities as locations to understanding them as flows (Batty 2013)1. In principle this means that we need to understand locations (or places) as defined by flows (or different forms of traffic), rather than locations only served by flows. This implies that we need to understand the built form and spatial structure of cities as a system, that by shaping flows creates a series of places with very specific relations to all other places in the city, which also give them very specific performative potentials. It also implies the rather fascinating notion that what happens in one place is dependent on its relation to all other places (Hillier 1996)2. Hence, to understand the individual place, we need a model of the city as a whole.

    Extensive research in this direction has taken place in recent years, that has also spilled over to urban design practice, not least in Sweden, where the idea that to understand the part you need to understand the whole is starting to be established. With the GIS-based Time model for Gothenburg that we present here, we address the next challenge. Place is not only something defined by its spatial relation to all other places in its system, but also by its history, or its evolution over time. Since the built form of the city changes over time, often by cities growing but at times also by cities shrinking, the spatial relation between places changes over time. If cities tend to grow, and most often by extending their periphery, it means that most places get a more central location over time. If this is a general tendency, it does not mean that all places increase their centrality to an equal degree. Depending on the structure of the individual city’s spatial form, different places become more centrally located to different degrees as well as their relative distance to other places changes to different degrees. The even more fascinating notion then becomes apparent; places move over time! To capture, study and understand this, we need a "time model".

    The GIS-based time model of Gothenburg consists of: • 12 GIS-layers of the street network, from 1960 to 2015, in 5-year intervals • 12 GIS-layers of the buildings from 1960 to 2015, in 5-year intervals - Please note that this dataset has been moved to a separate catalog post (https://doi.org/10.5878/t8s9-6y15) and unpublished due to licensing restrictions on its source dataset. • 12 GIS- layers of the plots from1960 to 2015, in 5-year intervals

    In the GIS-based Time model, for every time-frame, the combination of the three fundamental components of spatial form, that is streets, plots and buildings, provides a consistent description of the built environment at that particular time. The evolution of three components can be studied individually, where one could for example analyze the changing patterns of street centrality over time by focusing on the street network; or, the densification processes by focusing on the buildings; or, the expansion of the city by way of occupying more buildable land, by focusing on plots. The combined snapshots of street centrality, density and land division can provide insightful observations about the spatial form of the city at each time-frame; for example, the patterns of spatial segregation, the distribution of urban density or the patterns of sprawl. The observation of how the interrelated layers of spatial form together evolved and transformed through time can provide a more complete image of the patterns of urban growth in the city.

    The Time model was created following the principles of the model of spatial form of the city, as developed by the Spatial Morphology Group (SMoG) at Chalmers University of Technology, within the three-year research project ‘International Spatial Morphology Lab (SMoL)’.

    The project is funded by Älvstranden Utveckling AB in the framework of a larger cooperation project called Fusion Point Gothenburg. The data is shared via SND to create a research infrastructure that is open to new study initiatives.

    1. Batty, M. (2013), The New Science of Cities, Cambridge: MIT Press.
    2. Hillier, B., (1996), Space Is the Machine. Cambridge: University of Cambridge

    12 GIS-layers of plots in Gothenburg, from 1960 to 2015, in 5-year intervals. Only built upon plots (plots with buildings) are included. File format: shapefile (.shp), MapinfoTAB (.TAB). The coordinate system used is SWEREF 99TM, EPSG:3006.

    See the attached Technical Documentation for the description and further details on the production of the datasets. See the attached Report for the description of the related research project.

  14. n

    GIS data Town of Young Floodplain Risk Management Study and Plan

    • flooddata.ses.nsw.gov.au
    • data.nsw.gov.au
    Updated May 1, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). GIS data Town of Young Floodplain Risk Management Study and Plan [Dataset]. https://flooddata.ses.nsw.gov.au/dataset/gis-data-town-of-young-floodplain-risk-management-study-and-plan
    Explore at:
    Dataset updated
    May 1, 2014
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All data associated with the Town of Young Floodplain Risk Management Study and Plan. GIS Data Outputs, Hydraulics, Hydrology, Reporting, Survey. Data and Resources Data associated with Town of Young Floodplain Risk Management Study and PlanZIP (11.5 GB) All Data and GIS data associated with the Town of Young Floodplain Risk Management Study and Plan. Explore More information Download More info Creative Commons Attribution 4.0 International Public License By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution 4.0 International Public License (“Public License”). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions. Section 1 – Definitions. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights. Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license. Licensor means the individual(s) or entity(ies) granting rights under this Public License. Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning. Section 2 – Scope. License grant. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to: reproduce and Share the Licensed Material, in whole or in part; and produce, reproduce, and Share Adapted Material. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions. Term. The term of this Public License is specified in Section 6(a). Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material. Downstream recipients. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License. No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material. No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A):info:. Other rights. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise. Patent and trademark rights are not licensed under this Public License. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties. Section 3 – License Conditions. Your exercise of the Licensed Rights is expressly made subject to the following conditions. Attribution. If You Share the Licensed Material (including in modified form), You must: retain the following if it is supplied by the Licensor with the Licensed Material: identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated); a copyright notice; a notice that refers to this Public License; a notice that refers to the disclaimer of warranties; a URI or hyperlink to the Licensed Material to the extent reasonably practicable; indicate if You modified the Licensed Material and retain an indication of any previous modifications; and indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable. If You Share Adapted Material You produce, the Adapter\'s License You apply must not prevent recipients of the Adapted Material from complying with this Public License. Section 4 – Sui Generis Database Rights. Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material: for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database; if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database. For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights. Section 5 – Disclaimer of Warranties and Limitation of Liability. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this

  15. a

    Mean Travel Time by Means of Transportation - Place of Residence TAZ (in...

    • hub.arcgis.com
    • rtdc-mwcog.opendata.arcgis.com
    • +1more
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metropolitan Washington Council of Governments (2024). Mean Travel Time by Means of Transportation - Place of Residence TAZ (in minutes) [Dataset]. https://hub.arcgis.com/maps/mwcog::mean-travel-time-by-means-of-transportation-place-of-residence-taz-in-minutes
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Metropolitan Washington Council of Governments
    Area covered
    Description

    Average Travel Time by Mode of Transportation - Place of residence

  16. f

    Mapping of areas suitable for the application of biosolids in the...

    • scielo.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roberta Nunes Guimarães; Antônio Teixeira de Matos; Thais Girardi Carpanez (2023). Mapping of areas suitable for the application of biosolids in the Quadrilátero Ferrífero region, Minas Gerais, Brazil [Dataset]. http://doi.org/10.6084/m9.figshare.20278245.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELO journals
    Authors
    Roberta Nunes Guimarães; Antônio Teixeira de Matos; Thais Girardi Carpanez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    State of Minas Gerais, Iron Quadrangle, Brazil
    Description

    Abstract The recovery of degraded areas is imperative for the sustainability of mining activities. The main action implemented to improve the chemical, physical and biological conditions of soils, tailings and sterile deposits is the incorporation of organic material. Biosolids (hygienized sewage sludge) are among the organic materials that can be applied. However, considering the health risk they represent, not all areas are suitable for receiving this waste. The present research sought to map the environmental suitability of the Quadrilátero Ferrífero (QF) region to assess the applicability of biosolids. For this purpose, maps were elaborated using restrictive criteria established for the safe application of this residue to the soil by means of the Geographic Information System (GIS), using the ArcGIS software, version 10.2. The established criteria were pedology, topography, hydromorphism, presence of protected areas, soil texture, susceptibility to erosion, proximity to urban areas and their overlaps to obtain the final suitability areas. For the exclusion of areas that presented legal restrictions, the criteria of protected area, areas close to water bodies, urban areas, shallow soils and a slope greater than 45% were used, as established in literature, in CONAMA 498/2020 and in the Forest Law - Federal Law 12,652 of 2012. Of the areas analyzed, 58.5% were suitable for biosolid application, equivalent to 10,858.3 ha of the 18,587 ha studied, indicating the feasibility of biosolids application in part of the QF area to be recovered.

  17. c

    Current and Historical Estuary Extent - California [ds2792] GIS Dataset

    • map.dfg.ca.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Current and Historical Estuary Extent - California [ds2792] GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds2792.html
    Explore at:
    Area covered
    California
    Description

    CDFW BIOS GIS Dataset, Contact: PSMFC GIS, Description: Accurate mapping of tidal wetlands is vital for effective conservation and restoration of these valued habitats, and good mapping is key to strategic planning for coastal resilience. Tidal wetlands are defined by regular inundation by the tides; therefore, mapping of tidal wetlands should be based on knowledge of tidal water levels and the land areas inundated by the tides.

  18. S

    Defined Areas

    • splitgraph.com
    • data.wcad.org
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wcad (2024). Defined Areas [Dataset]. https://www.splitgraph.com/wcad/defined-areas-7ezg-6767
    Explore at:
    application/vnd.splitgraph.image, application/openapi+json, jsonAvailable download formats
    Dataset updated
    Oct 1, 2024
    Authors
    wcad
    Description

    This shapefile contains the Defined Area Boundaries for Williamson County, Texas. This shapefile is created and maintained by the Williamson Central Appraisal District Mapping Department. The data in this layer are represented as polygons.

    Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:

    See the Splitgraph documentation for more information.

  19. Means of Transportation to Work

    • catalog.data.gov
    • geodata.bts.gov
    • +1more
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Transportation Statistics (BTS) (Point of Contact) (2025). Means of Transportation to Work [Dataset]. https://catalog.data.gov/dataset/means-of-transportation-to-work2
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    Bureau of Transportation Statisticshttp://www.rita.dot.gov/bts
    Description

    The Means of Transportation to Work dataset was compiled using information from December 31, 2023 and updated December 12, 2024 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The Means of Transportation to Work table from the 2023 American Community Survey (ACS) 5-year estimates was joined to 2023 tract-level geographies for all 50 States, District of Columbia and Puerto Rico provided by the Census Bureau. A new file was created that combines the demographic variables from the former with the cartographic boundaries of the latter. The national level census tract layer contains data on the number and percentage of commuters (workers 16 years and over) that used various transportation modes to get to work. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529037

  20. U

    Elevation, Flow Accumulation, Flow Direction, and Stream Definition Data in...

    • data.usgs.gov
    • datasets.ai
    • +2more
    Updated Dec 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lindsey Schafer; Jennifer Sharpe (2023). Elevation, Flow Accumulation, Flow Direction, and Stream Definition Data in Support of the Illinois StreamStats Upgrade to the Basin Delineation Database [Dataset]. http://doi.org/10.5066/P9YIAUZQ
    Explore at:
    Dataset updated
    Dec 8, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Lindsey Schafer; Jennifer Sharpe
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2023
    Area covered
    Illinois
    Description

    The U.S. Geological Survey (USGS), in cooperation with the Illinois Center for Transportation and the Illinois Department of Transportation, prepared hydro-conditioned geographic information systems (GIS) layers for use in the Illinois StreamStats application. These data were used to delineate drainage basins and compute basin characteristics for updated peak flow and flow duration regression equations for Illinois. This dataset consists of raster grid files for elevation (dem), flow accumulation (fac), flow direction (fdr), and stream definition (str900) for each 8-digit Hydrologic Unit Code (HUC) area in Illinois merged into a single dataset. There are 51 full or partial HUC 8s represented by this data set: 04040002, 05120108, 05120109, 05120111, 05120112, 05120113, 05120114, 05120115, 05140202, 05140203, 05140204, 05140206, 07060005, 07080101, 07080104, 07090001, 07090002, 07090003, 07090004, 07090005, 07090006, 07090007, 07110001, 07110004, 07110009, 07120001, 07120002, 071200 ...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Scott Prinos; Joann Dixon (2021). Points for Maps: ArcGIS layer providing the site locations and the water-level statistics used for creating the water-level contour maps [Dataset]. http://doi.org/10.5066/F7DJ5CP8

Points for Maps: ArcGIS layer providing the site locations and the water-level statistics used for creating the water-level contour maps

Explore at:
Dataset updated
Nov 19, 2021
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Authors
Scott Prinos; Joann Dixon
License

U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically

Time period covered
Oct 1, 1989 - Sep 30, 2009
Description

Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually hig ...

Search
Clear search
Close search
Google apps
Main menu