100+ datasets found
  1. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhu, Guang-Fu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zhu, Guang-Fu
    Liu, Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  2. n

    Module 2 Lesson 2 – Student Directions – Thinking Spatially Using GIS

    • library.ncge.org
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). Module 2 Lesson 2 – Student Directions – Thinking Spatially Using GIS [Dataset]. https://library.ncge.org/documents/6829e7b205a7493a94685d361617e1b9
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset authored and provided by
    NCGE
    Description

    Thinking Spatially Using GIS

    Thinking Spatially Using GIS is a 1:1 set of instructional materials for students that use ArcGIS Online to teach basic geography concepts found in upper elementary school and above.
    Each module has both a teacher and student file.

    The animal kingdom is quite large, with thousands of animal species identified around the world and more being discovered all the time. To make sense of all these species, scientists typically classify animals based on their physical characteristics. They start with a general classification and then get more detailed until they end up with a scientific name for the animal. For example, in the Linnaeus classification, the scientific name for a brown bear is Ursus arctos. This means that it has a backbone, is a mammal and a carnivore, and is part of the bear family.

    Usually, it is easier to use common names to identify animals. In addition to their physical features, animals have many other characteristics: What country or area do they come from? What habitat do they live in? What kind of food do they like to eat?

    The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG

    All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries

  3. Global Geospatial Solutions Market By Technology (Geospatial Analytics, GIS,...

    • verifiedmarketresearch.com
    Updated Sep 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Global Geospatial Solutions Market By Technology (Geospatial Analytics, GIS, GNSS And Positioning), Component (Hardware, Software), Application (Planning And Analysis, Asset Management), End-User (Transportation, Defense And Intelligence), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/geospatial-solutions-market/
    Explore at:
    Dataset updated
    Sep 23, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Geospatial Solutions Market size was valued at USD 282.75 Billion in 2024 and is projected to reach USD 650.14 Billion by 2032, growing at a CAGR of 12.10% during the forecast period 2026-2032.Geospatial Solutions Market: Definition/ OverviewGeospatial solutions are applications and technologies that use spatial data to address geography, location, and Earth's surface problems. They use tools like GIS, remote sensing, GPS, satellite imagery analysis, and spatial modelling. These solutions enable informed decision-making, resource allocation optimization, asset management, environmental monitoring, infrastructure planning, and addressing challenges in sectors like urban planning, agriculture, transportation, disaster management, and natural resource management. They empower users to harness spatial information for better understanding and decision-making in various contexts.Geospatial solutions are technologies and methodologies used to analyze and visualize spatial data, ranging from urban planning to agriculture. They use GIS, remote sensing, and GNSS to gather, process, and interpret data. These solutions help users make informed decisions, solve complex problems, optimize resource allocation, and enhance situational awareness. They are crucial in addressing challenges and unlocking opportunities in today's interconnected world, such as mapping land use patterns, monitoring ecosystem changes, and real-time asset tracking.

  4. Comparing Country Development - Human Geography GeoInquiries

    • geoinquiries-education.hub.arcgis.com
    • hub.arcgis.com
    Updated Sep 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2018). Comparing Country Development - Human Geography GeoInquiries [Dataset]. https://geoinquiries-education.hub.arcgis.com/maps/6cabf90871f7425abe3fa66f94e52efb
    Explore at:
    Dataset updated
    Sep 18, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    Description

    Explore factors that define levels of development. The GeoInquiry activity is available here.Educational standards addressed:APHG: VI.B1. Analyze spatial variation in the Human Development Index. APHG: VI.B1. Explain social and economic measures of development.This map is part of a Human Geography GeoInquiry activity. Learn more about GeoInquiries.

  5. Module 2 Lesson 2 – Teacher – Thinking Spatially Using GIS

    • library.ncge.org
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). Module 2 Lesson 2 – Teacher – Thinking Spatially Using GIS [Dataset]. https://library.ncge.org/documents/3cee44c0185741f6b3fc30a53c14db05
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Description

    Thinking Spatially Using GIS

    Thinking Spatially Using GIS is a 1:1 set of instructional materials for students that use ArcGIS Online to teach basic geography concepts found in upper elementary school and above.
    Each module has both a teacher and student file.

    The animal kingdom is quite large, with thousands of animal species identified around the world and more being discovered all the time. To make sense of

    all these species, scientists typically classify animals based on their physical characteristics. They start with a general classification and then get more detailed until they end up with a scientific name for the animal. For example, in the Linnaeus classification, the scientific name for a brown bear is Ursus arctos. This means that it has a backbone, is a mammal and a carnivore, and is part of the bear family.

    Usually, it is easier to use common names to identify animals. In addition to their physical features, animals have many other characteristics: What country or area do they come from? What habitat do they live in? What kind of food do they like to eat?

    The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG

    All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries

  6. f

    Regional DARIUS Shape Files

    • figshare.com
    zip
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clémentine Cottineau (2016). Regional DARIUS Shape Files [Dataset]. http://doi.org/10.6084/m9.figshare.1348298.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Authors
    Clémentine Cottineau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These files correspond to the geometries of regions as defined in the DARIUS Database. Use for GIS.

  7. d

    Replication Data for: Minmaxing of Bayesian Improved Surname and Geography...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clark, Jesse; Curiel, John; Steelman, Tyler (2023). Replication Data for: Minmaxing of Bayesian Improved Surname and Geography Level Ups in Predicting Race [Dataset]. http://doi.org/10.7910/DVN/IH7ICK
    Explore at:
    Dataset updated
    Nov 19, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Clark, Jesse; Curiel, John; Steelman, Tyler
    Description

    Racial identification is a critical factor in understanding a multitude of important outcomes in many fields. However, inferring an individual’s race from ecological data is prone to bias and error. This process was only recently improved via Bayesian Improved Surname Geocoding (BISG). With surname and geographic-based demographic data, it is possible to more accurately estimate individual racial identification than ever before. However, the level of geography used in this process varies widely. Whereas some existing work makes use of geocoding to place individuals in precise census blocks, a substantial portion either skips geocoding altogether or relies on estimation using surname or county-level analyses. Presently, the tradeoffs of such variation are unknown. In this letter we quantify those tradeoffs through a validation of BISG on Georgia’s voter file using both geocoded and non-geocoded processes and introduce a new level of geography--ZIP codes--to this method. We find that when estimating the racial identification of White and Black voters, non-geocoded ZIP code-based estimates are acceptable alternatives. However, census blocks provide the most accurate estimations when imputing racial identification for Asian and Hispanic voters. Our results document the most efficient means to sequentially conduct BISG analysis to maximize racial identification estimation while simultaneously minimizing data missingness and bias.

  8. U.S. Census Blocks

    • hub.arcgis.com
    • colorado-river-portal.usgs.gov
    • +6more
    Updated Jun 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). U.S. Census Blocks [Dataset]. https://hub.arcgis.com/datasets/d795eaa6ee7a40bdb2efeb2d001bf823
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    U.S. Census BlocksThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census Blocks in the United States. A brief description of Census Blocks, per USCB, is that "Census blocks are statistical areas bounded by visible features such as roads, streams, and railroad tracks, and by nonvisible boundaries such as property lines, city, township, school district, county limits and short line-of-sight extensions of roads." Also, "the smallest level of geography you can get basic demographic data for, such as total population by age, sex, and race."Census Block 1007Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Blocks) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 69 (Series Information for 2020 Census Block State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Blocks - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocksFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  9. Module 1 Lesson 2 – Teacher – Thinking Spatially Using GIS

    • library.ncge.org
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). Module 1 Lesson 2 – Teacher – Thinking Spatially Using GIS [Dataset]. https://library.ncge.org/documents/NCGE::module-1-lesson-2-teacher-thinking-spatially-using-gis/about
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Description

    Thinking Spatially Using GIS

    Thinking Spatially Using GIS is a 1:1 set of instructional materials for students that use ArcGIS Online to teach basic geography concepts found in upper elementary school and above.
    Each module has both a teacher and student file.

    Ferdinand Magellan was the first European explorer to reach the Pacific Ocean by crossing the Atlantic Ocean when his expedition sailed through an opening, or strait, near the tip of South America in 1520. He named the ocean Mar Pacifico, which means peaceful sea. The strait, which connected the Atlantic and Pacific oceans, was later named for him.

    At that point in his journey, Magellan and his fleet had been at sea for more than a year. He had lost two of his five ships. Now he would cross the Pacific Ocean with three ships, looking for the coast of Asia and the Spice Islands. However, he had no idea the Pacific Ocean would be so big!

    The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG

    All Esri GeoInquiries can be found at http://www.esri.com/geoinquiries

  10. D

    Community Reporting Areas

    • data.seattle.gov
    • catalog.data.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Community Reporting Areas [Dataset]. https://data.seattle.gov/dataset/Community-Reporting-Areas/h66v-hiux
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Feb 3, 2025
    Description
    Please Note: Community Reporting Areas (CRA) have been updated to follow the 2020 census tract lines which resulted in minor changes to some boundary conditions. They have also been extended into water areas to allow the assignment of CRAs to overwater housing and businesses. To exclude the water polygons from a map choose the filter, water=0.

    Community reporting areas (CRAs) are designed to address a gap that existed in city geography. The task of reporting citywide information at a "community-like level" across all departments was either not undertaken or it was handled in inconsistent ways across departments.

    The CRA geography provides a "common language" for geographic description of the city for reporting purposes. Therefore, this geography may be used by departments for geographic reporting and tracking purposes, as appropriate. The U.S. Census Bureau census tract geography was chosen as the basis of the CRA geography due to their stability through time and link to widely-used demographic data.

    The following criteria for a CRA geography were defined for this effort:
    • no overlapping areas
    • complete coverage of the city
    • suitable scale to represent neighborhood areas/conditions
    • reasonably stable over time
    • consistent with census geography
    • relatively easy to use in a data context
    • familiar system of common place names
    • respects neighborhood district geography to the extent possible
    The following existing geographies were reviewed during this effort:
    • neighborhood planning areas (DON)
    • neighborhood districts (DON/CNC/Neighborhood District Councils)
    • city sectors/neighborhood plan implementation areas (DON)
    • urban centers/urban villages (DPD)
    • population sub-areas (DPD)
    • Neighborhood Map Atlas (City Clerk)
    • Census tract geography
    • topography
    • various other geographic information sources related to neighborhood areas and common place names
    This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.
  11. Integrated Assessment of Behavioral and Environmental Risk Factors for Lyme...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Casey Finch; Mohammed Salim Al-Damluji; Peter J. Krause; Linda Niccolai; Tanner Steeves; Corrine Folsom O’Keefe; Maria A. Diuk-Wasser (2023). Integrated Assessment of Behavioral and Environmental Risk Factors for Lyme Disease Infection on Block Island, Rhode Island [Dataset]. http://doi.org/10.1371/journal.pone.0084758
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Casey Finch; Mohammed Salim Al-Damluji; Peter J. Krause; Linda Niccolai; Tanner Steeves; Corrine Folsom O’Keefe; Maria A. Diuk-Wasser
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Block Island, Rhode Island
    Description

    Peridomestic exposure to Borrelia burgdorferi-infected Ixodes scapularis nymphs is considered the dominant means of infection with black-legged tick-borne pathogens in the eastern United States. Population level studies have detected a positive association between the density of infected nymphs and Lyme disease incidence. At a finer spatial scale within endemic communities, studies have focused on individual level risk behaviors, without accounting for differences in peridomestic nymphal density. This study simultaneously assessed the influence of peridomestic tick exposure risk and human behavior risk factors for Lyme disease infection on Block Island, Rhode Island. Tick exposure risk on Block Island properties was estimated using remotely sensed landscape metrics that strongly correlated with tick density at the individual property level. Behavioral risk factors and Lyme disease serology were assessed using a longitudinal serosurvey study. Significant factors associated with Lyme disease positive serology included one or more self-reported previous Lyme disease episodes, wearing protective clothing during outdoor activities, the average number of hours spent daily in tick habitat, the subject’s age and the density of shrub edges on the subject’s property. The best fit multivariate model included previous Lyme diagnoses and age. The strength of this association with previous Lyme disease suggests that the same sector of the population tends to be repeatedly infected. The second best multivariate model included a combination of environmental and behavioral factors, namely hours spent in vegetation, subject’s age, shrub edge density (increase risk) and wearing protective clothing (decrease risk). Our findings highlight the importance of concurrent evaluation of both environmental and behavioral factors to design interventions to reduce the risk of tick-borne infections.

  12. 13 - Comparing country development - Esri GeoInquiries™ collection for Human...

    • hub.arcgis.com
    Updated Dec 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2015). 13 - Comparing country development - Esri GeoInquiries™ collection for Human Geography [Dataset]. https://hub.arcgis.com/documents/1324c0f2a18f490ab99fbf5c429195be
    Explore at:
    Dataset updated
    Dec 1, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Explore factors that define levels of development. The activity uses a web-based map and is tied to the AP Human Geography benchmarks. Learning outcomes:Students will be able to distinguish between more developed, less developed, and newly industrializing countries.Students will be able to identify characteristics used to determine a country’s level of development.Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries

  13. Module 1 Lesson 2 – Student Directions – Thinking Spatially Using GIS

    • library.ncge.org
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). Module 1 Lesson 2 – Student Directions – Thinking Spatially Using GIS [Dataset]. https://library.ncge.org/documents/NCGE::module-1-lesson-2-student-directions-thinking-spatially-using-gis/about
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Description

    Thinking Spatially Using GIS

    Thinking Spatially Using GIS is a 1:1 set of instructional materials for students that use ArcGIS Online to teach basic geography concepts found in upper elementary school and above.
    Each module has both a teacher and student file.

    Ferdinand Magellan was the first European explorer to reach the Pacific Ocean by crossing the Atlantic Ocean when his expedition sailed through an opening, or strait, near the tip of South America in 1520. He named the ocean Mar Pacifico, which means peaceful sea. The strait, which connected the Atlantic and Pacific oceans, was later named for him.

    At that point in his journey, Magellan and his fleet had been at sea for more than a year. He had lost two of his five ships. Now he would cross the Pacific Ocean with three ships, looking for the coast of Asia and the Spice Islands. However, he had no idea the Pacific Ocean would be so big!

    The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG

    All Esri GeoInquiries can be found at http://www.esri.com/geoinquiries

  14. ACS Internet Access by Age and Race Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +4more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Age and Race Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/5a1b51d3c6374c3cbb7c9ff7acdba16b
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  15. f

    Imports-exports relationship among partial countries in 2005.

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wei Luo; Peifeng Yin; Qian Di; Frank Hardisty; Alan M. MacEachren (2023). Imports-exports relationship among partial countries in 2005. [Dataset]. http://doi.org/10.1371/journal.pone.0088666.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Wei Luo; Peifeng Yin; Qian Di; Frank Hardisty; Alan M. MacEachren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Flow1 means imports of importer1 from importer2 in current US millions of dollars, and flow2 means imports of importer2 from importer1 in current US millions of dollars.

  16. D

    Disability and Health Insurance - Seattle Neighborhoods

    • data.seattle.gov
    • catalog.data.gov
    • +1more
    csv, xlsx, xml
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Disability and Health Insurance - Seattle Neighborhoods [Dataset]. https://data.seattle.gov/dataset/Disability-and-Health-Insurance-Seattle-Neighborho/nxn5-xp4j
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Oct 22, 2024
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on disabilities and health insurance related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes C21007 Age by Veteran Status by Poverty Status in the Past 12 Months by Disability Status, B27010 Types of Health Insurance Coverage by Age, B22010 Receipt of Food Stamps/SNAP by Disability Status for Households. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.


    Table created for and used in the Neighborhood Profiles application.

    Vintages: 2023
    ACS Table(s): C21007, B27010, B22010


    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb(year)a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data

  17. ACS Geographical Mobility Variables - Boundaries

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Feb 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). ACS Geographical Mobility Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/5fbaf18418ee4dde927318ea208a8aa9
    Explore at:
    Dataset updated
    Feb 26, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows residence one year ago for those 1 year and older. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of people one year and over who lived in a different state one year ago. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B07204 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  18. ACS Internet Access by Education Variables - Boundaries

    • hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +2more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Education Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/62faad5b76b04b90adf47c020d7406ba
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by education. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  19. l

    The Australian neighbourhood land-use profile dataset

    • opal.latrobe.edu.au
    • researchdata.edu.au
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dennis Wollersheim; Ali Lakhani (2023). The Australian neighbourhood land-use profile dataset [Dataset]. http://doi.org/10.26181/12864236.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    La Trobe
    Authors
    Dennis Wollersheim; Ali Lakhani
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The land-use profile surrounding a neighbourhood is a determinant of health and associated with socioeconomic outcomes. In Australia, there is no national publicly available dataset detailing the land-use profile surrounding residential neighbourhoods. Using PostGIS a centroid was placed in every Australian Bureau of Statistics (ABS) defined Mesh Block (MB) – the smallest geographical structure in Australian geography which details the category of land-use (i.e. residential, parkland, commercial, industrial etc.) and population. Each MB was assigned a remoteness classification and socioeconomic status, as defined by the ABS. After a buffer based on a radius of 400 metres, 1-kilometre, 2-kilometres, and 5-kilometres was calculated around each centroid, the square metre of, and the percentage of the buffer covered by, each land-use category was calculated. This dataset will support the decisions of urban planners, diverse government departments, researchers and those involved in public and environmental health.

  20. f

    The Geography of Oxia Planum 01 Geography and Quad Grids

    • datasetcatalog.nlm.nih.gov
    • ordo.open.ac.uk
    • +1more
    Updated Sep 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frigeri, Alessandro; Volat, Matthieu; Hauber, Ernst; Thomas, Nick; Davis, Joel; Le Deit, Laetitia; Quantin-Nataf, Cathy; Nass, Andrea; Orgel, Csilla; Vago, Jorge L.; Sefton-Nash, Elliot; Adeli, Solmaz; Balme, Matt; Fawdon, Peter; Grindrod, Peter; Parks-Bowen, Adam; Loizeau, Damien; Cremonese, Gabriele (2021). The Geography of Oxia Planum 01 Geography and Quad Grids [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000822848
    Explore at:
    Dataset updated
    Sep 10, 2021
    Authors
    Frigeri, Alessandro; Volat, Matthieu; Hauber, Ernst; Thomas, Nick; Davis, Joel; Le Deit, Laetitia; Quantin-Nataf, Cathy; Nass, Andrea; Orgel, Csilla; Vago, Jorge L.; Sefton-Nash, Elliot; Adeli, Solmaz; Balme, Matt; Fawdon, Peter; Grindrod, Peter; Parks-Bowen, Adam; Loizeau, Damien; Cremonese, Gabriele
    Description

    This data set provides a grid of quads and projection information to be used for rover operations and the informal geographic naming convention for the regional geography of Oxia Planum. Both subject to update prior to the landed mission.Contents This data set contains 4 shapefiles and 1 zipped folder.OxiaPlanum_GeographicFeatures_2021_08_26. Point shapefile with the names of geographic features last updated at the date indicatedOxiaPlanum_GeographicRegions_2021_08_26. Polygon shapefile with the outlines of geographic regions fitted to the master quad grid and last updated at the date indicated.OxiaPlanum_QuadGrid_1km. Polygon shapefile of 1km quad that will be used for ExoMars rover missionOxiaPlanum_Origin_clong_335_45E_18_20N. The center point of the Oxia Planum as defined by the Rover Operations and Control center and origin point used for the Quad gridCRS_PRJ_Equirectangular_OxiaPlanum_Mars2000.zip. Zip folder containing the projection information use for all the data associated with this study. These are saved in the ESRI projection (.prj) and well know text formal (.wkt)Guide to individual filesFile name (example) Description OxiaPlanum_QuadGrid_1km.cpg Text display information OxiaPlanum_QuadGrid_1km.dbf Database file OxiaPlanum_QuadGrid_1km.prj Projection information OxiaPlanum_QuadGrid_1km.sbx Spatial index file OxiaPlanum_QuadGrid_1km.shp Shape file data <-Open this data in GiS with the other supporting files in the same directoryOxiaPlanum_QuadGrid_1km.shp.xml Symbolisation information OxiaPlanum_QuadGrid_1km.shx Geoprocessing history These data are provided with the following projection:Equirectangular_Mars_Oxia_Planum, Projection = Equidistant_Cylindrical, Datum = D_Mars_2000 Spheroid, Central meridian = 335.45Quad grid and contoursThe quad grid was created using the ArcPro 2.7 Grid Index Features Tool (Esri, 2021). The grid is a 121 × 120 array of 1000 m × 1000 m quads labelled ‘A1’ in the South West to ‘DP120’ in the North East. The grid covers the entire CTX mosaic and the lower left corner of quad BD50 coincides with the centre of the ROCC projection system at 335.45°E 18.20°N. Topographic contours were created at 25 m intervals from a CTX DEM down sampled to 100 m/pixel, with contours shorter than 1500 m in length were removed. Contours were smoothed using the PAEK algorithm at a tolerance of 200 m (USGS & MRCTR GIS Lab, 2018).Geographic regions A common geographical division and naming system for the Oxia Planum region is needed to allow ExoMars team members to communicate efficiently. Identifying and naming geographical locations and zones provides a spatial context for detailed observations, strategic planning and operations, and hypotheses testing. Differentiating geographic regionsWe divide Oxia Planum into 30 regions (Figure 2 and Table 3 from Fawdon et al 2021). This system of regions is a formalisation of the geographic differentiation demanded by discussions since the initial suggestion of Oxia Planum as a landing site in 2014 (ESA & The ExoMars 2018 Landing Site Selection Working Group (LSSWG), 2014) Each region is defined by a combination of topographic and or albedo changes in the HRSC and CTX data and that have needed to be talked about. Regions are smaller closer to the center of the landing site or where topography and albedo are more variable. This reflects the need to increase the fidelity of discussion where the rover is more likely to land or there are likely to have been more active geomorphic processes. As such these regions capture features pertaining to hypotheses about the paleo-environments being developed by the RSOWG and provide a natural framework to explore Oxia Planum. Naming geographic regionsThe regions were named in three ways: a number, a unique identifier, and a descriptive term. Unique identifiers were drawn from a list of Roman imperial and senatorial provinces at the largest geographic extent of the Roman empire in 117AD. This scheme was chosen because it has geographic and cultural ties throughout Europe and provides an appropriate number and variety of names. The descriptive terms (e.g., Planum, Lacus, etc) are those used in planetary toponomy (IAU, 1979). Names were selected to reflect the geography of the region (e.g., Caledonia has high elevation terrain in the northwest, Aegyptus has a large channel feature). Geographic locations within regions are also named. These names were drawn from a wider list of Roman towns or other relevant geographic locations with suitable, but process-agnostic, descriptive term (e.g., Alexandria Tholus named after the city in the ‘Aegyptus’ imperial province). These conventions have the capacity to expand this list as exploration of Oxia Planum continues.Although IAU recognised features (e.g., Malino crater) have also been included, all other names are informal. Informal naming of local features has been performed by previous Mars Rover mission teams. As has occurred during previous missions, some names will probably be replaced with formal IAU designations as the mission progresses.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Zhu, Guang-Fu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939

Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions

Explore at:
Dataset updated
Apr 12, 2022
Dataset provided by
Zhu, Guang-Fu
Liu, Jie
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Tibetan Plateau
Description

Introduction

Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

Data processing

We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

Version

Version 2022.1.

Acknowledgements

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

Citation

Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

Contacts

Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

Institution: Kunming Institute of Botany, Chinese Academy of Sciences

Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

Copyright

This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

Search
Clear search
Close search
Google apps
Main menu