This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS database has been developed by under the Small Hydropower Mapping and Improved Geospatial Electrification Planning in Indonesia Project [Project ID: P145273]. The scope of the project was to facilitate and improve the planning and investment process for small hydro development both grid and isolated systems through: building up a central database on smal hydro at national scale and validating the mapping of small hydro in NTT, Maluku, Maluku Utara and Sulawesi improved electrification planning by integrating small hydro potential for the provinces of NTT, Maluku, Maluku Utara and Sulawesi into the planning process. Please refer to the country project page for additional outputs and reports: http://esmap.org/re_mapping_indonesia The GIS database contains the following datasets: SHP(promising sites) Admin Divisions Topomas_grid Rivers, Geology Forest_areas Roads RainfallGauges RunoffGauges ElectricSystem, each accompanied by a metadata file. Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Indonesia Small Hydro GIS Atlas, 2017, https://energydata.info/dataset/indonesia-small-hydro-gis-database-2017"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS HydroAtlas of Madagascar is the final output from the small hydro resource mapping component of the activity “ Renewable Energy Resource Mapping and Geospatial Planning – Madagascar” [Project ID: P145350]. You can find more information about the project here: https://www.esmap.org/re_mapping_madagascar Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Madagascar Small Hydro GIS Atlas, 2017, https://energydata.info/dataset/madagscar-small-hydro-gis-atlas-2017"
Geospatial data about US Minor Cities (Regional). Export to CAD, GIS, PDF, CSV and access via API.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
Minor Civil Divisions from the Michigan Geographic Framework (MGF) base map. This data set consists of polygons that represent the boundaries of cities and townships. The aggregation of all polygons provides 100% coverage of Michigan.
This layers shows major watershed boundaries in Montgomery County, Pennsylvania. This USGS map layer displays the National Watershed Boundary Dataset (WBD) for HUC12 boundaries.The intent of defining hydrologic units (HU) for the WBD is to establish a base-line drainage boundary framework, accounting for all land and surface areas. The WBD is a comprehensive aggregated collection of HU data consistent with the national criteria for delineation and resolution. Each HU is identified by a unique hydrologic unit code (HUC).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS database has been developed under the project "Renewable Energy Mapping: Small Hydro Tanzania". This study is part of a technical assistance project, ESMAP funded, being implemented by Africa Energy Practice of the World Bank in Tanzania which aims at supporting resource mapping and geospatial planning for small hydro. Please refer to the country project page for additional outputs and reports: http://esmap.org/re_mapping_TNZ The GIS database contains the following datasets: Administrative Boundaries Hydrology Protected Areas Satellite Imagery Land Cover Geology Topography Population Infrastructure: Power/ Transport each accompanied by a metadata file Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Tanzania Small Hydro GIS Atlas, 2018, https://energydata.info/dataset/tanzania-small-hydro-gis-database-2018"
This data set was developed by the Missouri Department of Transportation. Routes represent a single linear feature, such as a city street or highway. Routes are linear features composed of one or more arcs or parts of an arc; for example, a highway may be composed of a number of connected arcs. A route, for linear referencing purposes, is simply a linear feature with measure values attached to it. Each route, at minimum, has an associated measurement system consisting of a route identifier, a measurement value along the route. The measures are used to locate data that describe parts of the route. Event data can represent point or range data. Point events are locations (an accident, a sign, or a culvert) somewhere along a route at a single measure (log mile, mile post). Linear or range events (functional classification, pavement condition, pavement type) extend along a route that starts at a measure and ends at another measure. Mar 2019 update.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/MBKUFLhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/MBKUFL
Minor Towns of the Russian Empire, as depicted on the Geographical Atlas of the Russian Empire produced by the Military-Topographical Depot of His Imperial Majesty's General Staff, 1820-1827. Component of the Imperiia Project. Documentation and analysis available here (http://dighist.fas.harvard.edu/projects/imperiia/items/show/654)
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water guages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The Geographic Information System (GIS) market is witnessing robust growth with its global market size projected to reach USD 25.7 billion by 2032, up from USD 8.7 billion in 2023, at a compound annual growth rate (CAGR) of 12.4% during the forecast period. This growth is primarily driven by the increasing integration of GIS technology across various industries to improve spatial data visualization, enhance decision-making, and optimize operations. The benefits offered by GIS in terms of accuracy, efficiency, and cost-effectiveness are convincing more sectors to adopt these systems, thereby expanding the market size significantly.
A major growth factor contributing to the GIS market expansion is the escalating demand for location-based services. As businesses across different sectors recognize the importance of spatial data analytics in driving strategic decisions, the reliance on GIS applications is becoming increasingly pronounced. The rise in IoT devices, coupled with the enhanced capabilities of AI and machine learning, has further fueled the demand for GIS solutions. These technologies enable the processing and analysis of large volumes of spatial data, thereby providing valuable insights that businesses can leverage for competitive advantage. In addition, government initiatives promoting the adoption of digital infrastructure and smart city projects are playing a crucial role in the growth of the GIS market.
The advancement in satellite imaging and remote sensing technologies is another key driver of the GIS market growth. With enhanced satellite capabilities, the precision and quality of geospatial data have significantly improved, making GIS applications more reliable and effective. The availability of high-resolution satellite imagery has opened new avenues in various sectors including agriculture, urban planning, and disaster management. Moreover, the decreasing costs of satellite data acquisition and the proliferation of drone technology are making GIS more accessible to small and medium enterprises, further expanding the market potential.
The advent of 3D Geospatial Technologies is revolutionizing the way industries utilize GIS data. By providing a three-dimensional perspective, these technologies enhance spatial analysis and visualization, offering more detailed and accurate representations of geographical areas. This advancement is particularly beneficial in urban planning, where 3D models can simulate cityscapes and infrastructure, allowing planners to visualize potential developments and assess their impact on the environment. Moreover, 3D geospatial data is proving invaluable in sectors such as construction and real estate, where it aids in site analysis and project planning. As these technologies continue to evolve, they are expected to play a pivotal role in the future of GIS, expanding its applications and driving further market growth.
Furthermore, the increasing application of GIS in environmental monitoring and management is bolstering market growth. With growing concerns over climate change and environmental degradation, GIS is being extensively used for resource management, biodiversity conservation, and natural disaster risk management. This trend is expected to continue as more organizations and governments prioritize sustainability, thereby driving the demand for advanced GIS solutions. The integration of GIS with other technologies such as big data analytics, and cloud computing is also expected to enhance its capabilities, making it an indispensable tool for environmental management.
Regionally, North America is currently leading the GIS market, driven by the widespread adoption of advanced technologies and the presence of major GIS vendors. The regionÂ’s focus on infrastructure development and smart city projects is further propelling the market growth. Europe is also witnessing significant growth owing to the increasing adoption of GIS in various industries such as agriculture and transportation. The Asia Pacific region is anticipated to exhibit the highest CAGR during the forecast period, attributed to rapid urbanization, government initiatives for digital transformation, and increasing investments in infrastructure development. In contrast, the markets in Latin America and the Middle East & Africa are growing steadily as these regions continue to explore and adopt GIS technologies.
<a href="https://dataintelo.com/report/geospatial-data-fusion-market" target="_blank&quo
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Minor Civil Divisions in St. Louis County. A minor civil division (MCD) is a term used by the United States Census Bureau for primary governmental and/or administrative divisions of a county, such as a civil township, precinct, or magisterial district.Metadata
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
These watershed boundaries were delineated by the Martha's Vineyard Commission (MVC) and the SMAST during the Mass Estuaries studies. Local knowledge and field data along with a computer watershed model were utilized to generate these boundaries. Topological checks were performed to make sure that neighboring boundaries do not overlap. Also, were appropriate, shared boundaries are identical (i.e. where the edge of a sub-watershed overlaps with its major watershed boundary).The Major Watershed boundaries are stored as a separate data layer and can be found within the Dukes County GIS AGOL data collection.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments.
The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
Geospatial data about Texas Minor Aquifers. Export to CAD, GIS, PDF, CSV and access via API.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.