100+ datasets found
  1. a

    Travel Monitoring Analysis System Volume

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • geodata.bts.gov
    • +4more
    Updated Jul 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2020). Travel Monitoring Analysis System Volume [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/5a9462b519854ec6a2334b3c0bdfc3c1
    Explore at:
    Dataset updated
    Jul 1, 2020
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Description

    The Travel Monitoring Analysis System (TMAS) - Volume dataset was compiled on December 31, 2023 and was published on July 16, 2024 from the Federal Highway Administration (FHWA), and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TMAS data included in this table have been collected by the FHWA from State DOTs through (temporal data representing each time period) permanent count data. DOTs determine what volume data is reported for any given month or day within the month. Each record in the volume data for the reported site, direction or lane is for the given day of record (it contains all 24 hours of data). The attributes are used by FHWA for its Travel Monitoring Analysis System and external agencies and have been intentionally limited to location referencing attributes since the core station description attribute data are contained within TMAS. The attributes in the Volume data correspond with the Volume file format found in Chapter 6 of the 2001 Traffic Monitoring Guide (https://doi.org/10.21949/1519109).

  2. D

    Geographic Information System GIS Tools Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System GIS Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-gis-tools-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Tools Market Outlook



    The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.



    One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.



    Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.



    The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.



    Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.



    Component Analysis



    The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.



    Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.



    The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr

  3. d

    Water Quality Monitoring Sites

    • catalog.data.gov
    • anrgeodata.vermont.gov
    • +7more
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ANR - DEC (2024). Water Quality Monitoring Sites [Dataset]. https://catalog.data.gov/dataset/water-quality-monitoring-sites-5e6f4
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset provided by
    ANR - DEC
    Description

    Water Quality Monitoring Site identifies locations across the state of Vermont where water quality data has been collected, including habitat, chemistry, fish and/or macroinvertebrates. Currently the layer is not maintained as site locations are provided through another means to the ANR Natural Resources Atlas.

  4. f

    Publishing Geospatial Data as Linked Data: Graph Processing Techniques for...

    • esip.figshare.com
    pptx
    Updated Feb 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McGibbney, Lewis John (2019). Publishing Geospatial Data as Linked Data: Graph Processing Techniques for Automated Feature Detection and Resolution within Hydrography GIS Products [Dataset]. http://doi.org/10.6084/m9.figshare.7590968.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Feb 6, 2019
    Dataset provided by
    ESIP
    Authors
    McGibbney, Lewis John
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Interesting, largely unexplored data analysis and information retrieval opportunities exist for GIS data. In their current form, traditional data usage patterns for data persisted in shapefiles or spatially-enabled relational databases are limited. Opportunities exist to achieve ESIP’s Winter 2019 theme of ‘increasing the use and value of Earth science data and information’ by transforming geospatial data from their original formats into their Resource Description Framework (RDF) manifestation. This work establishes an innovative workflow enabling the publication for Geospatial data persisted in geospatially enabled databases (PostGIS and MonetDB), ESRI shapefiles and XML, GML, KML, JSON, GeoJSON and CSV documents as graphs of linked open geospatial data. This affords the capability to identify implicit connections between related data that wasn't previously linked e.g. automating the detection of features present within large hydrography datasets as well as smaller regional examples and resolving features in a consistent fashion. This previously unavailable capability is achieved through the use of a semantic technology stack which leverages well matured standards within the Semantic Web space such as RDF as the data model, GeoSPARQL as the data access language and International Resource Identifier’s (IRI) for uniquely identifying and referencing entities such as rivers, streams and other water bodies. In anticipation of NASA’s forthcoming Surface Water Ocean Topography (SWOT – https://swot.jpl.nasa.gov) mission, which once launched in 2021 will make NASA’s first-ever global survey of Earth’s surface water, this work uses Hydrography data products (USGS’s National Hydrography Dataset and other topically relevant examples) as the topic matter. The compelling result is a new, innovative data analysis and information retrieval capability which will increases the use and value of Earth science data (GIS) and information. This presentation was given at the Earth Science Information Partners (ESIP) Winter Meeting in January 2019.

  5. Geographic Information System (GIS) Software Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geographic Information System (GIS) Software Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geographic-information-system-software-market-global-industry-analysis
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Software Market Outlook



    According to our latest research, the global Geographic Information System (GIS) Software market size reached USD 11.6 billion in 2024, reflecting a robust demand for spatial data analytics and location-based services across various industries. The market is experiencing a significant growth trajectory, driven by a CAGR of 12.4% from 2025 to 2033. By the end of 2033, the GIS Software market is forecasted to attain a value of USD 33.5 billion. This remarkable expansion is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing, which are enhancing the capabilities and accessibility of GIS platforms.




    One of the major growth factors propelling the GIS Software market is the increasing adoption of location-based services across urban planning, transportation, and utilities management. Governments and private organizations are leveraging GIS solutions to optimize infrastructure development, streamline resource allocation, and improve emergency response times. The proliferation of smart city initiatives worldwide has further fueled the demand for GIS tools, as urban planners and municipal authorities require accurate spatial data for effective decision-making. Additionally, the evolution of 3D GIS and real-time mapping technologies is enabling more sophisticated modeling and simulation, expanding the scope of GIS applications beyond traditional mapping to include predictive analytics and scenario planning.




    Another significant driver for the GIS Software market is the rapid digitization of industries such as agriculture, mining, and oil & gas. Precision agriculture, for example, relies heavily on GIS platforms to monitor crop health, manage irrigation, and enhance yield forecasting. Similarly, the mining sector uses GIS for exploration, environmental impact assessment, and asset management. The integration of remote sensing data with GIS software is providing stakeholders with actionable insights, leading to higher efficiency and reduced operational risks. Furthermore, the growing emphasis on environmental sustainability and regulatory compliance is prompting organizations to invest in advanced GIS solutions for monitoring land use, tracking deforestation, and managing natural resources.




    The expanding use of cloud-based GIS solutions is also a key factor driving market growth. Cloud deployment offers scalability, cost-effectiveness, and remote accessibility, making GIS tools more accessible to small and medium enterprises as well as large organizations. The cloud model supports real-time data sharing and collaboration, which is particularly valuable for disaster management and emergency response teams. As organizations increasingly prioritize digital transformation, the demand for cloud-native GIS platforms is expected to rise, supported by advancements in data security, interoperability, and integration with other enterprise systems.




    Regionally, North America remains the largest market for GIS Software, accounting for a significant share of global revenues. This leadership is underpinned by substantial investments in smart infrastructure, advanced transportation systems, and environmental monitoring programs. The Asia Pacific region, however, is witnessing the fastest growth, driven by rapid urbanization, government-led digital initiatives, and the expansion of the utility and agriculture sectors. Europe continues to demonstrate steady adoption, particularly in environmental management and urban planning, while Latin America and the Middle East & Africa are emerging as promising markets due to increasing investments in infrastructure and resource management.





    Component Analysis



    The GIS Software market is segmented by component into Software and Services, each playing a pivotal role in the overall value chain. The software segment includes comprehensive GIS platforms, spatial analytics tools, and specialized applications

  6. Latest Earthquake Monitoring Dashboard

    • teachwithgis.ie
    • cacgeoportal.com
    • +5more
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Latest Earthquake Monitoring Dashboard [Dataset]. https://www.teachwithgis.ie/datasets/esri::latest-earthquake-monitoring-dashboard
    Explore at:
    Dataset updated
    Feb 12, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This dashboard monitors the latest earthquake events around the world. It automatically updates when new events come in to show you where they occurred, how significant they were, and if any there were any resulting tsunamis. The real-time earthquake data, provided by the Living Atlas, was used to create a web map that was then used in this dashboard.To learn about the creation of this dashboard, read the blog: Making an Auto-Focusing Real-Time Dashboard. Feel free to make a copy and see how it is configured.

  7. D

    Geographic Information System Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Market Outlook



    The global Geographic Information System (GIS) market size was valued at approximately USD 8.1 billion in 2023 and is projected to reach around USD 16.3 billion by 2032, growing at a CAGR of 8.2% during the forecast period. One of the key growth factors driving this market is the increasing adoption of GIS technology across various industries such as agriculture, construction, and transportation, which is enhancing operational efficiencies and enabling better decision-making capabilities.



    Several factors are contributing to the robust growth of the GIS market. Firstly, the increasing need for spatial data in urban planning, infrastructure development, and natural resource management is accelerating the demand for GIS solutions. For instance, governments and municipalities globally are increasingly relying on GIS for planning and managing urban sprawl, transportation systems, and utility networks. This growing reliance on spatial data for efficient resource allocation and policy-making is significantly propelling the GIS market.



    Secondly, the advent of advanced technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and machine learning is enhancing the capabilities of GIS systems. The integration of these technologies with GIS allows for real-time data analysis and predictive analytics, making GIS solutions more powerful and valuable. For example, AI-powered GIS can predict traffic patterns and help in effective city planning, while IoT-enabled GIS can monitor and manage utilities like water and electricity in real time, thus driving market growth.



    Lastly, the rising focus on disaster management and environmental monitoring is further boosting the GIS market. Natural disasters like floods, hurricanes, and earthquakes necessitate the need for accurate and real-time spatial data to facilitate timely response and mitigation efforts. GIS technology plays a crucial role in disaster risk assessment, emergency response, and recovery planning, thereby increasing its adoption in disaster management agencies. Moreover, environmental monitoring for issues like deforestation, pollution, and climate change is becoming increasingly vital, and GIS is instrumental in tracking and addressing these challenges.



    Regionally, the North American market is expected to hold a significant share due to the widespread adoption of advanced technologies and substantial investments in infrastructure development. Asia Pacific is anticipated to witness the fastest growth, driven by rapid urbanization, industrialization, and supportive government initiatives for smart city projects. Additionally, Europe is expected to show steady growth due to stringent regulations on environmental management and urban planning.



    Component Analysis



    The GIS market by component is segmented into hardware, software, and services. The hardware segment includes devices like GPS, imaging sensors, and other data capture devices. These tools are critical for collecting accurate spatial data, which forms the backbone of GIS solutions. The demand for advanced hardware components is rising, as organizations seek high-precision instruments for data collection. The advent of technologies such as LiDAR and drones has further enhanced the capabilities of GIS hardware, making data collection faster and more accurate.



    In the software segment, GIS platforms and applications are used to store, analyze, and visualize spatial data. GIS software has seen significant advancements, with features like 3D mapping, real-time data integration, and cloud-based collaboration becoming increasingly prevalent. Companies are investing heavily in upgrading their GIS software to leverage these advanced features, thereby driving the growth of the software segment. Open-source GIS software is also gaining traction, providing cost-effective solutions for small and medium enterprises.



    The services segment encompasses various professional services such as consulting, integration, maintenance, and training. As GIS solutions become more complex and sophisticated, the need for specialized services to implement and manage these systems is growing. Consulting services assist organizations in selecting the right GIS solutions and integrating them with existing systems. Maintenance and support services ensure that GIS systems operate efficiently and remain up-to-date with the latest technological advancements. Training services are also crucial, as they help users maximize the potential of GIS technologies.



  8. f

    Data from: MONITORING OF BRAZILIAN SEASONALLY DRY TROPICAL FOREST BY REMOTE...

    • scielo.figshare.com
    jpeg
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andre Medeiros Rocha; Marcos Esdras Leite; Mário Marcos do Espírito-Santo (2023). MONITORING OF BRAZILIAN SEASONALLY DRY TROPICAL FOREST BY REMOTE SENSING [Dataset]. http://doi.org/10.6084/m9.figshare.14307536.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELO journals
    Authors
    Andre Medeiros Rocha; Marcos Esdras Leite; Mário Marcos do Espírito-Santo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    Abstract Among the various characteristics of the Brazilian territory, one is foremost: the country has the second largest forest reserve on the planet, accounting for approximately 10% of the total recorded global forest formations. In this scenario, seasonally dry tropical forests (SDTF) are the second smallest forest type in Brazil, located predominantly in non-forested biomes, such as the Cerrado and Caatinga. Consequently, correct identification is fundamental to their conservation, which is hampered as SDTF areas are generally classified as other types of vegetation. Therefore, this research aimed to monitor the Land Use and Coverage in 2007 and 2016 in the continuous strip from the North of Minas Gerais to the South of Piauí, to diagnose the current situation of Brazilian deciduous forests and verify the chief agents that affect its deforestation and regeneration. Our findings were that the significant increase in cultivated areas and the spatial mobility of pastures contributed decisively to the changes presented by plant formations. However, these drivers played different roles in the losses/gains. In particular, it was concluded that the changes occurring to deciduous forests are particularly explained by pastured areas. The other vegetation types were equally impacted by this class, but with a more incisive participation of cultivation.

  9. Monitoring Trends in Burn Severity Alaska (Map Service)

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +3more
    bin
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Monitoring Trends in Burn Severity Alaska (Map Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Monitoring_Trends_in_Burn_Severity_Alaska_Map_Service_/25973173
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alaska
    Description

    Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  10. a

    Expected Real Time Monitors (Air Quality)

    • denver-data-library-mappingjustice.hub.arcgis.com
    • trac-cdphe.opendata.arcgis.com
    • +1more
    Updated Jan 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colorado Department of Public Health and Environment (2017). Expected Real Time Monitors (Air Quality) [Dataset]. https://denver-data-library-mappingjustice.hub.arcgis.com/datasets/c0e3f3e2ee664ee7989dc151540df7a1_0
    Explore at:
    Dataset updated
    Jan 4, 2017
    Dataset authored and provided by
    Colorado Department of Public Health and Environment
    Area covered
    Description

    Because for whatever reason realtime monitors are not reporting (either because they are down for maintenance, communications are offline or some other reason), it is helpful to have a companion to the "Monitoring Sites by Current Air Quality Index" Open Data endpoint, which shows all the the real time sites which are expected to be providing hourly polling data. Gaseous monitors of various pollutants are solid, while particulate matter organized by size (10 microns or less are in purple, 2.5 microns or less are in green). A complete key can be found here:

  11. Salmonid Population Monitoring Areas - California - CMP [ds3001]

    • gis.data.ca.gov
    • data.cnra.ca.gov
    • +7more
    Updated May 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). Salmonid Population Monitoring Areas - California - CMP [ds3001] [Dataset]. https://gis.data.ca.gov/maps/f091d852919f49b3a6ca64f459222b73
    Explore at:
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The California Monitoring Plan (CMP) salmonid monitoring areas and associated population data are part of an ongoing effort to summarize existing and past salmonid monitoring efforts in the areas identified by Adams et al. 2011. These data are compiled and maintained by the California Department of Fish and Wildlife with the cooperation of monitoring practitioners. Updates and associated outreach are intended to occur on an annual basis. Data were created from several sources and existing datasets: some monitoring areas were accurately depicted using the USGS National Hydrography Dataset (NHD), other monitoring areas were approximated using the monitoring point location and the USGS StreamStats tool to depict the watershed area above that point. The areas are intended to represent the approximate extent of sampling within sub-basins, watershed areas, or regions. For example, the spatial extent of monitoring using a fixed count station is approximated by accounting for all anadromous fish habitat upstream of the sampling location. Therefore, the area is approximated by entering the monitoring location coordinates into the StreamStats tool. The resulting shapefile is then examined to ensure the watershed area did not include habitat above dams or barriers to migration. Areas were clipped when needed. The data user should recognize that errors may have occurred during production of this dataset, changes may have occurred to the external sources used post transfer, and for other possible reasons. The population metrics summarized in the associated tabular data may be regarded as spatially limited, temporally limited, and not considered a complete estimate for the population being described. The data user is advised to refer to the annual reports cited in the Source field from the tabular data for additional details regarding monitoring within the area spatially depicted.Abbreviation Definitions: SGS = Spawning Ground Survey, RM = River Mile, RST = Rotary Screw Trap, RKM = River Kilometer, FCS = Fixed Count Station, STH = Steelhead, CC = Coastal Chinook, DS = Downstream

  12. 4

    4D Geographic Information System (GIS) Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). 4D Geographic Information System (GIS) Report [Dataset]. https://www.archivemarketresearch.com/reports/4d-geographic-information-system-gis-20172
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global 4D Geographic Information System (GIS) market size was valued at USD 2743 million in 2025 and is projected to reach USD 7931.3 million by 2033, exhibiting a CAGR of 14.5% during the forecast period (2025-2033). The market growth is attributed to the increasing adoption of 4D GIS in various industries, including environmental monitoring, urban planning, traffic monitoring, and the military. Furthermore, the growing need for accurate and timely geospatial information for decision-making is driving the demand for 4D GIS solutions. The market for 4D GIS is segmented by type (remote sensing 4D GIS, sensor-based 4D GIS) and application (environmental monitoring, urban planning, traffic monitoring, military, others). Remote sensing 4D GIS is expected to hold a significant market share due to its ability to provide high-resolution images and data for various applications. In terms of application, environmental monitoring is expected to witness the highest growth rate during the forecast period, owing to the increasing need for real-time monitoring of environmental parameters such as air quality, water quality, and land use. Key players in the market include ESRI, Hexagon, GeoMarvel, Autodesk, Bentley Systems, Trimble Inc., and 4D Mapper. 4D Geographic Information System (GIS)

  13. p

    GIS-compatible files of N2000 monitoring areas - Dataset - CKAN

    • dataportal.ponderful.eu
    Updated Oct 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). GIS-compatible files of N2000 monitoring areas - Dataset - CKAN [Dataset]. https://dataportal.ponderful.eu/dataset/gis-compatible-files-of-n2000-monitoring-areas
    Explore at:
    Dataset updated
    Oct 6, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GIS-compatible files containing the polygons of 10km x 10km squares representing areas that include sites proposed for monitoring of amphibians and reptiles of EU Community Interest from Romania in the frame of a project implemented in 2012 – 2015 period.

  14. Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Air and Radiation-Office of Air Quality Planning and Standards (Point of Contact) (2025). Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS [Dataset]. https://catalog.data.gov/dataset/air-quality-system-aqs-monitoring-network-epa-oar-oaqps8
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This GIS dataset contains points which depict air quality monitors within EPA's Air Quality System (AQS) monitoring network. This dataset is updated weekly to reflect the most recent changes in the monitoring network. The monitors are generally operated by State, local, and tribal air pollution control agencies using procedures specified by the U.S. EPA. These agencies collect the data, quality assure it, and then submit it to the EPA Air Quality System (AQS). The GIS dataset includes monitor information and links to download historic air quality data at each monitor.

  15. Geographic Information System Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Geographic Information System Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/geographic-information-system-market-global-industry-analysis
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System Market Outlook



    As per our latest research, the global Geographic Information System (GIS) market size reached USD 12.3 billion in 2024. The industry is experiencing robust expansion, driven by a surging demand for spatial data analytics across diverse sectors. The market is projected to grow at a CAGR of 11.2% from 2025 to 2033, reaching an estimated USD 31.9 billion by 2033. This accelerated growth is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing with GIS solutions, as well as the increasing adoption of location-based services and smart city initiatives worldwide.




    One of the primary growth factors fueling the GIS market is the rapid adoption of geospatial analytics in urban planning and infrastructure development. Governments and private enterprises are leveraging GIS to optimize land use, manage resources efficiently, and enhance public services. Urban planners utilize GIS to analyze demographic trends, plan transportation networks, and ensure sustainable development. The integration of GIS with Building Information Modeling (BIM) and real-time data feeds has further amplified its utility in smart city projects, driving demand for sophisticated GIS platforms. The proliferation of IoT devices and sensors has also enabled the collection of high-resolution geospatial data, which is instrumental in developing predictive models for urban growth and disaster management.




    Another significant driver of the GIS market is the increasing need for disaster management and risk mitigation. GIS technology plays a pivotal role in monitoring natural disasters such as floods, earthquakes, and wildfires. By providing real-time spatial data, GIS enables authorities to make informed decisions, coordinate response efforts, and allocate resources effectively. The growing frequency and intensity of natural disasters, coupled with heightened awareness about climate change, have compelled governments and humanitarian organizations to invest heavily in advanced GIS solutions. These investments are not only aimed at disaster response but also at long-term resilience planning, thereby expanding the scope and scale of GIS applications.




    The expanding application of GIS in the agriculture and utilities sectors is another crucial growth factor. Precision agriculture relies on GIS to analyze soil conditions, monitor crop health, and optimize irrigation practices, ultimately boosting productivity and sustainability. In the utilities sector, GIS is indispensable for asset management, network optimization, and outage response. The integration of GIS with remote sensing technologies and drones has revolutionized data collection and analysis, enabling more accurate and timely decision-making. Moreover, the emergence of cloud-based GIS platforms has democratized access to geospatial data and analytics, empowering small and medium enterprises to harness the power of GIS for operational efficiency and strategic planning.




    From a regional perspective, North America continues to dominate the GIS market, supported by substantial investments in smart infrastructure, advanced research capabilities, and a strong presence of leading technology providers. However, Asia Pacific is emerging as the fastest-growing region, driven by rapid urbanization, government initiatives for digital transformation, and increasing adoption of GIS in agriculture and disaster management. Europe is also witnessing significant growth, particularly in transportation, environmental monitoring, and public safety applications. The Middle East & Africa and Latin America are gradually catching up, with growing investments in infrastructure development and resource management. This regional diversification is expected to drive innovation and competition in the global GIS market over the forecast period.





    Component Analysis



    The Geographic Information System market is segmented by component into hardware, software, and services, each playing a unique role

  16. Water Quality Monitoring Sites

    • healthdata.gov
    • opendata.hawaii.gov
    • +4more
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.hawaii.gov (2025). Water Quality Monitoring Sites [Dataset]. https://healthdata.gov/State/Water-Quality-Monitoring-Sites/xn8v-hsbp
    Explore at:
    csv, xml, application/rdfxml, json, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    opendata.hawaii.gov
    Description

    [Metadata] Water Quality Monitoring Sites in Hawaii as of June, 2017. Source: Hawaii State Department of Health, Environmental Planning Office, June, 2017. This data shows the location of water quality monitoring sites used by the Hawaii Department of Health’s Clean Water Branch.



    For more information, contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis/.

  17. D

    GIS Data Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Management Market Outlook



    The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



    One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



    Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



    The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



    Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



    Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



    Component Analysis



    The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

  18. d

    Points for Maps: ArcGIS layer providing the site locations and the...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Points for Maps: ArcGIS layer providing the site locations and the water-level statistics used for creating the water-level contour maps [Dataset]. https://catalog.data.gov/dataset/points-for-maps-arcgis-layer-providing-the-site-locations-and-the-water-level-statistics-u
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  19. G

    GIS Partial Discharge Online Monitoring System Report

    • promarketreports.com
    doc, pdf, ppt
    Updated Apr 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). GIS Partial Discharge Online Monitoring System Report [Dataset]. https://www.promarketreports.com/reports/gis-partial-discharge-online-monitoring-system-159934
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 29, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for GIS Partial Discharge Online Monitoring Systems is experiencing robust growth, driven by increasing demand for reliable and efficient power grids, coupled with stringent regulatory requirements for grid safety and asset management. The market, estimated at $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033. This growth is fueled by several key factors: the expanding adoption of Gas Insulated Substations (GIS) globally, rising concerns about equipment failures and associated downtime costs, the increasing need for predictive maintenance strategies, and technological advancements leading to more accurate and sophisticated monitoring systems. The electric utility sector is the primary driver, followed by transformer substations, with significant growth opportunities emerging in other applications as the technology matures and becomes more cost-effective. The market segmentation reveals a strong preference for electrical monitoring systems over non-electrical alternatives, reflecting the inherent advantages of real-time data acquisition and analysis in preventing catastrophic failures. Geographic distribution showcases a significant share held by North America and Europe, driven by early adoption and well-established infrastructure. However, rapidly developing economies in Asia Pacific, particularly China and India, are projected to witness significant growth in the coming years, contributing substantially to the overall market expansion. Restraints to market growth include the high initial investment costs associated with implementing these systems and the need for specialized expertise in installation and maintenance. Nevertheless, the long-term benefits of preventing costly outages and enhancing grid reliability far outweigh these challenges, making the GIS Partial Discharge Online Monitoring System market a promising investment opportunity. This report provides a detailed analysis of the global GIS Partial Discharge Online Monitoring System market, projecting substantial growth in the coming years. We delve into market size, segmentation, key players, emerging trends, and challenges, offering valuable insights for industry stakeholders. The market is expected to surpass $2 billion by 2030, driven by increasing demand for reliable grid infrastructure and stringent regulations.

  20. Habitat and Vegetation Assessment - 2017 - Terrestrial Species Stressor...

    • gis.data.ca.gov
    • data.ca.gov
    • +6more
    Updated May 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2019). Habitat and Vegetation Assessment - 2017 - Terrestrial Species Stressor Monitoring [ds2828] [Dataset]. https://gis.data.ca.gov/datasets/CDFW::habitat-and-vegetation-assessment-2017-terrestrial-species-stressor-monitoring-ds2828
    Explore at:
    Dataset updated
    May 23, 2019
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Vegetation surveys were conducted at each Great Valley and Mojave Desert study site between March and June 2017. The surveys followed the California Department of Fish and Wildlife Vegetation Reconnissance Field Protocol and were representative of either the lifeform for which the survey site was selected, or the dominant vegetation type encountered on site, if the preassigned lieform was not found. These reconnaissance vegetation surveys are based on a representative stand with a subset of dominant or characteristic plant species and their cover values recorded rather than a plot based survey. Field crews determined the primary alliance for the stand and identified the dominant species present, along with percent cover and phenology information. If there was any uncertainty in keying to alliance, a secondary alliance was also described, along with any details to aid in later determination. The CDFW Vegetation Classification and Mapping Program reviewed and confirmed or corrected all field assessments herein.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of Transportation: ArcGIS Online (2020). Travel Monitoring Analysis System Volume [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/5a9462b519854ec6a2334b3c0bdfc3c1

Travel Monitoring Analysis System Volume

Explore at:
Dataset updated
Jul 1, 2020
Dataset authored and provided by
U.S. Department of Transportation: ArcGIS Online
Description

The Travel Monitoring Analysis System (TMAS) - Volume dataset was compiled on December 31, 2023 and was published on July 16, 2024 from the Federal Highway Administration (FHWA), and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TMAS data included in this table have been collected by the FHWA from State DOTs through (temporal data representing each time period) permanent count data. DOTs determine what volume data is reported for any given month or day within the month. Each record in the volume data for the reported site, direction or lane is for the given day of record (it contains all 24 hours of data). The attributes are used by FHWA for its Travel Monitoring Analysis System and external agencies and have been intentionally limited to location referencing attributes since the core station description attribute data are contained within TMAS. The attributes in the Volume data correspond with the Volume file format found in Chapter 6 of the 2001 Traffic Monitoring Guide (https://doi.org/10.21949/1519109).

Search
Clear search
Close search
Google apps
Main menu