Facebook
TwitterThe Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterUpdated Continually
Facebook
TwitterData set that contains information on archaeological remains of the pre historic settlement of the Letolo valley on Savaii on Samoa. It is built in ArcMap from ESRI and is based on previously unpublished surveys made by the Peace Corps Volonteer Gregory Jackmond in 1976-78, and in a lesser degree on excavations made by Helene Martinsson Wallin and Paul Wallin. The settlement was in use from at least 1000 AD to about 1700- 1800. Since abandonment it has been covered by thick jungle. However by the time of the survey by Jackmond (1976-78) it was grazed by cattle and the remains was visible. The survey is at file at Auckland War Memorial Museum and has hitherto been unpublished. A copy of the survey has been accessed by Olof Håkansson through Martinsson Wallin and Wallin and as part of a Masters Thesis in Archeology at Uppsala University it has been digitised.
Olof Håkansson has built the data base structure in the software from ESRI, and digitised the data in 2015 to 2017. One of the aims of the Masters Thesis was to discuss hierarchies. To do this, subsets of the data have been displayed in various ways on maps. Another aim was to discuss archaeological methodology when working with spatial data, but the data in itself can be used without regard to the questions asked in the Masters Thesis. All data that was unclear has been removed in an effort to avoid errors being introduced. Even so, if there is mistakes in the data set it is to be blamed on the researcher, Olof Håkansson. A more comprehensive account of the aim, questions, purpose, method, as well the results of the research, is to be found in the Masters Thesis itself. Direkt link http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1149265&dswid=9472
Purpose:
The purpose is to examine hierarchies in prehistoric Samoa. The purpose is further to make the produced data sets available for study.
Prehistoric remains of the settlement of Letolo on the Island of Savaii in Samoa in Polynesia
Facebook
TwitterAddresses of buildings, businesses, parks, and open spaces in the City of Cambridge. This dataset contains the complete list of addresses in Cambridge, along with each address's geospatial coordinates and relevant administrative boundaries (e.g., Census block, polling district, public safety area). The dataset does not include individual apartment units.The dataset is sourced from Cambridge's master address and GIS databases. Shapefiles for this data and other Cambridge geospatial data can be found on on the City's GIS Data Dictionary at https://www.cambridgema.gov/GIS/gisdatadictionary
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
Facebook
TwitterFormation transfrontalière UniGR: AMASE - Erasmus Mundus Master in Advanced Material Science and Engineering (M.Sc.) - Source: UniGR
Facebook
TwitterThe Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming, Montana, and Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (yell_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (yell_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yell_geology_metadata_faq.pdf). Also included is a zip containing a Montana State University Master's thesis and supporting documents and data. The thesis focuses on addressing map boundary inconsistencies and remapping portions of the park. Data and documents supporting the thesis are 1.) a geodatabase containing field data points, 2.) a collection of documents describing field sites, 3.) spreadsheets containing geochemical analysis results, and 4.) photographs taken during field work. Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey, Montana Bureau of Mines and Geology and Montana State University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yell_geology_metadata.txt or yell_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis tile layer can be used as a plain, base map for the master plan
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
*Please note that the data published within this dataset is a live API link to CYC's GIS server. Any changes made to the master copy of the data will be immediately reflected in the resources of this dataset.The date shown in the "Last Updated" field of each GIS resource reflects when the data was first published.
Facebook
TwitterThis is a geographic dataset of the Master Development Plans (MDP). A MDP is required for any development of two or more phases. The agreement includes the location and widths of proposed streets, lots, blocks, floodplains and easement information.
Facebook
TwitterThe Digital Geologic-GIS Map of Knife River Indian Villages National Historic Site and Vicinity, North Dakota is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (knri_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (knri_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (knri_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (knri_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (knri_geology_metadata_faq.pdf). Please read the knri_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: University of North Dakota, Department of Anthropology and Archeology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (knri_geology_metadata.txt or knri_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterSmall Area plan polygons as determined by the planning department of the City of Alexandria. Small Area Plans are the 18 geographic planning areas within the City that together create the City Master Plan. These master plans are guiding documents that provide community-based long-range planning and analysis regarding the physical development and appearance of neighborhoods across the City. Overlay plans are Supplemental plans and amendments to existing Small Area Plans that provide greater standards or regulations. Properties located within the boundaries are subject to the requirements and regulations per the overlay plan in addition to other City standards and policies. If the overlay plan is silent to or does not address a specific issue or topic, the underlying Small Area Plan applies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UniGR cross-border study DFHI-ISFATES: Computer Science (M.Sc.) Source: DFHI-ISFATES Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2273&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/0214a3be-688b-4bac-b174-724c62857ff8 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Cross_border_programmes_science_mathematics_computing_2023_WMS/guest with layer name(s): -DFHI_ISFATES_Computer_Science_MSc
Facebook
TwitterThe Kansas Master Ground-water Well Inventory (MWI) is a central repository that imports and links together the State's primary ground-water well data sets- KDHE's WWC5, KDA-DWR's WIMAS, and KGS' WIZARD into a single, online source. The most "accurate" of the common source fields are used to represent the well sites, for example- GPS coordinates if available are used over other methods to locate a well. The MWI maintains the primary identification tags to allow specific well records to be linked back to the original data sources.This data is compiled by the Kansas Geological Survey. For more information, please see the Groundwater Master Well Inventory page.
Facebook
TwitterOpen Government Licence 2.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
License information was derived automatically
Environmental Permits in York. *Please note that the data published within this dataset is a live API link to CYC's GIS server. Any changes made to the master copy of the data will be immediately reflected in the resources of this dataset.The date shown in the "Last Updated" field of each GIS resource reflects when the data was first published.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UniGR cross-border study programme: AMASE - Erasmus Mundus Master in Advanced Material Science and Engineering (M.Sc.) Source: UniGR Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2249&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/7542c173-d6fb-4ffd-82d3-923a3bdf6552 This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Cross_border_programmes_engineering_manufacturing_constructing_2023_WMS/guest with layer name(s): -UniGR_AMASE_MSc
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0-standalone.htmlhttps://www.gnu.org/licenses/gpl-3.0-standalone.html
This dataset contains raw GIS data sourced from the BAG (Basisregistratie Adressen en Gebouwen; Registry of Addresses and Buildings). It provides comprehensive information on buildings, including advanced height data and administrative details. It also contains geographic divisions within The Hague. Additionally, the dataset incorporates energy label data, offering insights into the energy efficiency and performance of these buildings. This combined dataset serves as the backbone of a Master's thesis in Industrial Ecology, analysing residential and office cooling and its environmental impacts in The Hague, Netherlands. The codebase of this analysis can be found in this Github repository: https://github.com/simonvanlierde/msc-thesis-ie The dataset includes a background research spreadsheet containing supporting calculations. It also presents geopackages with results from the cooling demand model (CDM) for various scenarios: Status quo (SQ), 2030, and 2050 scenarios (Low, Medium, and High) Background research data The background_research_data.xlsx spreadsheet contains comprehensive background research calculations supporting the shaping of input parameters used in the model. It contains several sheets:
Cooling Technologies: Details the various cooling technologies examined in the study, summarizing their characteristics and the market penetration mixes used in the analysis. LCA Results of Ventilation Systems: Provides an overview of the ecoinvent processes serving as proxies for the life-cycle impacts of cooling equipment, along with calculations of the weight of cooling systems and contribution tables from the LCA-based assessment. Material Scarcity: A detailed examination of the critical raw material content in the material footprint of ecoinvent processes, representing cooling equipment. Heat Plans per Neighbourhood: Forecasts of future heating solutions for each neighbourhood in The Hague. Building Stock: Analysis of the projected growth trends in residential and office building stocks in The Hague. AC Market: Market analysis covering air conditioner sales in the Netherlands from 2002 to 2022. Climate Change: Computations of climate-related parameters based on KNMI climate scenarios. Electricity Mix Analysis: Analysis of future projections for the Dutch electricity grid and calculations of life-cycle carbon intensities of the grid. Input data Geographic divisions
The outline of The Hague municipality through the Municipal boundaries (Gemeenten) layer, sourced from the Administrative boundaries (Bestuurlijke Gemeenten) dataset on the PDOK WFS service. District (Wijken) and Neighbourhood (Buurten) layers were downloaded from the PDOK WFS service (from the CBS Wijken en Buurten 2022 data package) and clipped to the outline of The Hague. The 4-digit postcodes layer was downloaded from PDOK WFS service (CBS Postcode4 statistieken 2020) and clipped to The Hague's outline. The postcodes within The Hague were subsequently stored in a csv file. The census block layer was downloaded from the PDOK WFS service (from the CBS Vierkantstatistieken 100m 2021 data package) and also clipped to the outline of The Hague. These layers have been combined in the GeographicDivisions_TheHague GeoPackage. BAG data
BAG data was acquired through the download of a BAG GeoPackage from the BAG ATOM download page. In the resulting GeoPackage, the Residences (Verblijfsobject) and Building (Pand) layers were clipped to match The Hague's outline. The resulting residence data can be found in the BAG_buildings_TheHague GeoPackage. 3D BAG
Due to limitations imposed by the PDOK WFS service, which restricts the number of downloadable buildings to 10,000, it was necessary to acquire 145 individual GeoPackages for tiles covering The Hague from the 3D BAG website. These GeoPackages were merged using the ogr2ogr append function from the GDAL library in bash. Roof elevation data was extracted from the LoD 1.2 2D layer from the resulting GeoPackage. Ground elevation data was obtained from the Pand layer. Both of these layers were clipped to match The Hague's outline. Roof and ground elevation data from the LoD 1.2 2D and Pand layers were joined to the Pand layer in the BAG dataset using the BAG ID of each building. The resulting data can be found in the BAG_buildings_TheHague GeoPackage. Energy labels
Energy labels were downloaded from the Energy label registry (EP-online) and stored in energy_labels_TheNetherlands.csv. UHI effect data
A bitmap with the UHI effect intensity in The Hague was retrieved from the from the Dutch Natural Capital Atlas (Atlas Natuurlijk Kapitaal) and stored in UHI_effect_TheHague.tiff. Output data
The residence-level data joined to the building layer is contained in the BAG_buildings_with_residence_data_full GeoPackage. The results for each building, according to different scenarios, are compiled in the buildings_with_CDM_results_[scenario]_full GeoPackages. The scenarios are abbreviated as follows:
SQ: Status Quo, covering the 2018-2022 reference period. 2030: An average scenario projected for the year 2030. 2050_L: A low-impact, best-case scenario for 2050. 2050_M: A medium-impact, moderate scenario for 2050. 2050_H: A high-impact, worst-case scenario for 2050.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw data used in MSc Thesis. Available for reproducing methodology
Facebook
TwitterFormation transfrontalière UniGR: Physique (M.Sc.) - Source: UniGR
Facebook
TwitterMassGIS is working very closely with the State 911 Department in the state’s Executive Office of Public Safety and Security on the Next Generation 911 Emergency Call System. MassGIS developed and is maintaining the map and address information that are at the heart of this new system. Statewide deployment of this new 9-1-1 call routing system was completed in 2018.Address sources include the Voter Registration List from the Secretary of the Commonwealth, site addresses from municipal departments (primarily assessors), and customer address lists from utilities. Addresses from utilities were “anonymized” to protect customer privacy. The MAD was also validated for completeness using the Emergency Service List (a list of telephone land line addresses) from Verizon.The MAD contains both tabular and spatial data, with addresses being mapped as point features. At present, the MAD contains 3.2 million address records and 2.2 million address points. As the database is very dynamic with changes being made daily, the data available for download will be refreshed weekly.A Statewide Addressing Standard for Municipalities is another useful asset that has been created as part of this ongoing project. It is a best practices guide for the creation and storage of addresses for Massachusetts Municipalities.Points features with each point having an address to the building/floor/unit level, when that information is available. Where more than one address is located at a single location multiple points are included (i.e. "stacked points"). The points for the most part represent building centroids. Other points are located as assessor parcel centroids.Points will display at scales 1:75,000 and closer.MassGIS' service does not contain points for Boston; they may be accessed at https://data.boston.gov/dataset/live-street-address-management-sam-addresses/resource/873a7659-68b6-4ac0-98b7-6d8af762b6f1.More details about the MAD and Master Address Points.Feature service also available.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
MasterAddressBlocks were created for the field work phase of the Master Address Project. The blocks were derived from U.S. Census blocks, and were modified to create a set of maps to be used for field validation and verification of Cambridge addresses. The numbering does not hold any pattern.Explore all our data on the Cambridge GIS Data Dictionary.Attributes NameType DetailsDescription UNQ_ID type: Integerwidth: 4precision: 10 Block number
UNQ_ID2 type: Stringwidth: 8precision: 0 Neighborhood abbreviation and block number separated by "-"
NHOOD type: Stringwidth: 6precision: 0 Neighborhood abbreviation
Facebook
TwitterThe Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).