Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
Building a resource locator in ArcGIS Online (video).View this short demonstration on how to build a simple resource locator in ArcGIS Online. In this demonstration the presenter publishes an existing Web Map to the Local Perspective configurable application template. The resulting application includes the ability to locate and navigate to different health resources that would be critical in managing a surge of displaced people related to a significant event impacting public health._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
This layer shows all schools in Merced County, including private, college, and universities.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Needing to answer the question of “where” sat at the forefront of everyone’s mind, and using a geographic information system (GIS) for real-time surveillance transformed possibly overwhelming data into location intelligence that provided agencies and civic leaders with valuable insights.This book highlights best practices, key GIS capabilities, and lessons learned during the COVID-19 response that can help communities prepare for the next crisis.GIS has empowered:Organizations to use human mobility data to estimate the adherence to social distancing guidelinesCommunities to monitor their health care systems’ capacity through spatially enabled surge toolsGovernments to use location-allocation methods to site new resources (i.e., testing sites and augmented care sites) in ways that account for at-risk and vulnerable populationsCommunities to use maps and spatial analysis to review case trends at local levels to support reopening of economiesOrganizations to think spatially as they consider “back-to-the-workplace” plans that account for physical distancing and employee safety needsLearning from COVID-19 also includes a “next steps” section that provides ideas, strategies, tools, and actions to help jump-start your own use of GIS, either as a citizen scientist or a health professional. A collection of online resources, including additional stories, videos, new ideas and concepts, and downloadable tools and content, complements this book.Now is the time to use science and data to make informed decisions for our future, and this book shows us how we can do it.Dr. Este GeraghtyDr. Este Geraghty is the chief medical officer and health solutions director at Esri where she leads business development for the Health and Human Services sector.Matt ArtzMatt Artz is a content strategist for Esri Press. He brings a wide breadth of experience in environmental science, technology, and marketing.
Mapping Our World Using GIS is a 1:1 set of instructional materials for teaching basic concepts found in middle school world geography. Each module consists of multiple files.
The Mapping Our World collection is at: http://esriurl.com/MOW.
All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries
This computer activity will show you how to start the ArcGIS Online program. You will be guided
through the basics of using ArcGIS Online map viewer to explore maps. After you do this activity, you will be prepared to complete other GIS activities.
Essential configurations for highly scalable ArcGIS Online web apps (ArcGIS Blog).Learn best practices for configuring web applications that receive a high amount of web traffic, use a quick checklist focus on critical settings._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Air, Water, and Aquatic Environments (AWAE) research program is one of eight Science Program areas within the Rocky Mountain Research Station (RMRS). Our science develops core knowledge, methods, and technologies that enable effective watershed management in forests and grasslands, sustain biodiversity, and maintain healthy watershed conditions. We conduct basic and applied research on the effects of natural processes and human activities on watershed resources, including interactions between aquatic and terrestrial ecosystems. The knowledge we develop supports management, conservation, and restoration of terrestrial, riparian and aquatic ecosystems and provides for sustainable clean air and water quality in the Interior West. With capabilities in atmospheric sciences, soils, forest engineering, biogeochemistry, hydrology, plant physiology, aquatic ecology and limnology, conservation biology and fisheries, our scientists focus on two key research problems: Core watershed research quantifies the dynamics of hydrologic, geomorphic and biogeochemical processes in forests and rangelands at multiple scales and defines the biological processes and patterns that affect the distribution, resilience, and persistence of native aquatic, riparian and terrestrial species. Integrated, interdisciplinary research explores the effects of climate variability and climate change on forest, grassland and aquatic ecosystems. Resources in this dataset:Resource Title: Projects, Tools, and Data. File Name: Web Page, url: https://www.fs.fed.us/rm/boise/AWAE/projects.html Projects include Air Temperature Monitoring and Modeling, Biogeochemistry Lab in Colorado, Rangewide Bull Trout eDNA Project, Climate Shield Cold-Water Refuge Streams for Native Trout, Cutthroat trout-rainbow trout hybridization - data downloads and maps, Fire and Aquatic Ecosystems science, Fish and Cattle Grazing reports, Geomophic Road Analysis and Inventory Package (GRAIP) tool for erosion and sediment delivery to streams, GRAIP_Lite - Geomophic Road Analysis and Inventory Package (GRAIP) tool for erosion and sediment delivery to streams, IF3: Integrating Forests, Fish, and Fire, National forest climate change maps: Your guide to the future, National forest contributions to streamflow, The National Stream Internet network, people, data, GIS, analysis, techniques, NorWeST Stream Temperature Regional Database and Model, River Bathymetry Toolkit (RBT), Sediment Transport Data for Idaho, Nevada, Wyoming, Colorado, SnowEx, Stream Temperature Modeling and Monitoring, Spatial Statistical Modeling on Stream netowrks - tools and GIS downloads, Understanding Sculpin DNA - environmental DNA and morphological species differences, Understanding the diversity of Cottusin western North America, Valley Bottom Confinement GIS tools, Water Erosion Prediction Project (WEPP), Great Lakes WEPP Watershed Online GIS Interface, Western Division AFS - 2008 Bull Trout Symposium - Bull Trout and Climate Change, Western US Stream Flow Metric Dataset
Learn how to use Admin Tools for ArcGIS Online to delete students and the content (including WebMaps and WebApps). You should be thinking about removing student and content on your schools subscription at least once a year.You should be thinking about removing students and content on your subscription at least once a year.To setup Admin Tools for ArcGIS Online on your schools account refer to https://arcg.is/0z4H4rUpdated December 2022.
In this asynchronous session, you will use some of the free GIS tools from the Teach With GIS website, created and maintained by the Esri UK education team. All of these tools are free to use and accessible as websites from laptops, tablets and mobile devices. We recommend that you view them on a laptop or tablet if possible, to give you plenty of screen space to see every detail. They do not require any logins or subscriptions. We want you to experience using modern, online GIS tools from the perspective of a student before you begin to create your own tools, maps, and lessons. We have chosen a range of tools that let you experience GIS as a tool to examine physical and human geography, and to compare and contrast over space and time.
Seattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse
With the spatial analysis tools now being available in the ArcGIS Online Map Viewer, you may want to permanently change the map viewer that your schools ArcGIS Online subscription opens when you or your students click the map option. This video takes you through how to make this change.Recorded 27 Feb 2023.There is no audio on this video.
If you need information on how ArcGIS Online, or other cloud based Esri services work and how the data is secured, you are in the right place. The links described below should help you answer any data security and governance questions related to the use of ArcGIS Online at your university.
To help with the your management of students and content in your schools ArcGIS Online account you can activate Admin Tools for ArcGIS on your account. This video steps you through how to activate Admin Tools for ArcGIS Online on your account.Recorded March 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
If you have ever had an error message pop up in ArcGIS Online that mentions you have exceeded the user types in your account, watch this video to see how to resolve this issue.This video takes you through the steps of how to do change students and teachers user types on the rare occasion that you are required to change user types in your schools ArcGIS Online account.ArcGIS Online Administration.Video recorded - April 2020.
Maryland's K thru 12 public charter schools offer more innovative programs and are held accountable for improved student achievement. Charter schools are publicly funded and accept applications for student enrollment. Maryland has a total of 48 charter schools located in 4 counties and the City of Baltimore.This is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://mdgeodata.md.gov/imap/rest/services/Education/MD_EducationFacilities/FeatureServer/6
Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.