100+ datasets found
  1. a

    QGIS - Open Source GIS Software

    • home-ecgis.hub.arcgis.com
    • data-ecgis.opendata.arcgis.com
    • +1more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://home-ecgis.hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  2. G

    Geographic Information System (GIS) Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information System (GIS) Software Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-system-gis-software-1968617
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) software market is projected to expand significantly, with a market size of XXX million in 2025 and a CAGR of XX% during the forecast period of 2025-2033. The growing adoption of GIS technology across various industries, including urban planning, environmental management, and transportation, is driving market growth. Additionally, the increasing availability of spatial data and the advancements in cloud computing and mobile GIS are further fueling market expansion. Key trends in the GIS software market include the rise of web-based GIS platforms, the integration of artificial intelligence (AI) and machine learning (ML) capabilities, and the growing popularity of open-source GIS solutions. North America and Europe are the major markets for GIS software, while the Asia Pacific region is expected to witness significant growth in the coming years. Major players in the GIS software market include Esri, Hexagon, Pitney Bowes, SuperMap, Bentley Systems, GE, GeoStar, and Zondy Cyber Group. These companies offer a wide range of GIS software products and services to meet the varying needs of different industries and organizations.

  3. d

    NEPAnode MapWarper

    • catalog.data.gov
    Updated Nov 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOE General Counsel (2020). NEPAnode MapWarper [Dataset]. https://catalog.data.gov/dataset/nepanode-mapwarper
    Explore at:
    Dataset updated
    Nov 10, 2020
    Dataset provided by
    DOE General Counsel
    Description

    This site is part of pilot effort at the US Department of Energy (DOE) - Office of NEPA Policy and Compliance to evaluate providing IT web services as a shared service, hosted on the cloud, and using only Free and Open Source Software (FOSS). The site is an integrated component of the larger NEPAnode project but is a stand alone service. The site allows users to upload static map images with no geographic data so that they can be accurately referenced/rectified on an webmap. This site allows for the revitalizing of otherwise unusable/archived maps such as historic maps, site surveys, site plans, etc. turning them into usable geographic data which is subsequently made available as a KML file for use in Google Earth/Maps and as a Web Mapping Service (WMS) for using in web-based webmapping application such as NEPAnode or in desktop GIS software.

  4. a

    OpenStreetMap

    • ethiopia.africageoportal.com
    • data.baltimorecity.gov
    • +46more
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). OpenStreetMap [Dataset]. https://ethiopia.africageoportal.com/maps/a5511fbe18ce46788b78adbcba13bc1e
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.

  5. Geographic Information System (GIS) In Telecom Sector Market Analysis APAC,...

    • technavio.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System (GIS) In Telecom Sector Market Analysis APAC, North America, Europe, South America, Middle East and Africa - China, US, UK, Canada, Italy - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/gis-market-in-telecom-sector-industry-analysis
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States, United Kingdom, Global
    Description

    Snapshot img

    GIS In Telecom Sector Market Size 2024-2028

    The GIS in telecom sector market size is forecast to increase by USD 1.91 billion at a CAGR of 14.68% between 2023 and 2028.

    Geographic Information Systems (GIS) have gained significant traction In the telecom sector due to the increasing adoption of advanced technologies such as big data, sensors, drones, and LiDAR. The use of GIS enables telecom companies to effectively manage and analyze large volumes of digital data, including satellite and GPS information, to optimize infrastructure monitoring and antenna placement. In the context of smart cities, GIS plays a crucial role in enabling efficient communication between developers and end-users by providing real-time data on construction progress and infrastructure status. Moreover, the integration of LiDAR technology with drones offers enhanced capabilities for surveying and mapping telecom infrastructure, leading to improved accuracy and efficiency.
    However, the implementation of GIS In the telecom sector also presents challenges, including data security concerns and the need for servers and computers to handle the large volumes of data generated by these technologies. In summary, the telecom sector's growing reliance on digital technologies such as GIS, big data, sensors, drones, and LiDAR is driving market growth, while the need for effective data management and security solutions presents challenges that must be addressed.
    

    What will be the Size of the GIS In Telecom Sector Market During the Forecast Period?

    Request Free Sample

    The Geographic Information System (GIS) market In the telecom sector is experiencing significant growth due to the increasing demand for electronic information and visual representation of data in various industries. This market encompasses a range of hardware and software solutions, including GNSS/GPS antennas, Lidar, GIS collectors, total stations, imaging sensors, and more. Major industries such as agriculture, oil & gas, architecture, and infrastructure monitoring are leveraging GIS technology for data analysis and decision-making. The adoption rate of GIS In the telecom sector is driven by the need for efficient data management and analysis, as well as the integration of real-time data from various sources.
    Data formats and sources vary widely, from satellite and aerial imagery to ground-based sensors and IoT devices. The market is also witnessing innovation from startups and established players, leading to advancements in data processing capabilities and integration with other technologies like 5G networks and AI. Applications of GIS In the telecom sector include smart urban planning, smart utilities, and smart public works, among others.
    

    How is this GIS In Telecom Sector Industry segmented and which is the largest segment?

    The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Geography
    
      APAC
    
        China
    
    
      North America
    
        Canada
        US
    
    
      Europe
    
        UK
        Italy
    
    
      South America
    
    
    
      Middle East and Africa
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period. The telecom sector's Global GIS market encompasses software solutions for desktops, mobiles, cloud, and servers, along with developers' platforms. companies provide industry-specific GIS software, expanding the growth potential of this segment. Telecom companies heavily utilize intelligent maps generated by GIS for informed decisions on capacity planning and enhancements, such as improved service and next-generation networks. This drives significant growth In the software segment. Commercial entities offer open-source GIS software to counteract the threat of counterfeit products.
    GIS technologies are integral to telecom network management, spatial data analysis, infrastructure planning, location-based services, network coverage mapping, data visualization, asset management, real-time network monitoring, design, wireless network mapping, integration, maintenance, optimization, and geospatial intelligence. Key applications include 5G network planning, network visualization, outage management, geolocation, mobile network optimization, and smart infrastructure planning. The GIS industry caters to major industries, including agriculture, oil & gas, architecture, engineering, construction, mining, utilities, retail, healthcare, government, and smart city planning. GIS solutions facilitate real-time data management, spatial information, and non-spatial information, offering enterprise solutions and transportation applications.
    

    Get a glance at the market report of share of variou

  6. World - Terrain Elevation Above Sea Level (ELE) GIS Data, (Global Solar...

    • data.subak.org
    • datacatalog.worldbank.org
    geotiff
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2023). World - Terrain Elevation Above Sea Level (ELE) GIS Data, (Global Solar Atlas) [Dataset]. https://data.subak.org/dataset/world-terrain-elevation-above-sea-level-ele-gis-data-global-solar-atlas
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains terrain elevation above sea level (ELE) in [m a.s.l.] covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characeristics: ELE GISdata (GeoTIFF) Data format: GEOTIFF File size : 826.8 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month *For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) *For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

  7. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • solomonislands-data.sprep.org
    pdf, zip
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in the Solomon Islands [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-solomon-islands
    Explore at:
    pdf(5434848), pdf(969719), zip, pdf(3669473)Available download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Solomon Islands, 168.10043334961 -12.561265715616)), 168.10043334961 -4.0464671937446, 155.35629272461 -4.0464671937446, POLYGON ((155.35629272461 -12.561265715616
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  8. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. G

    GIS in the Cloud Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS in the Cloud Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-in-the-cloud-1436787
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS in the Cloud market is projected to reach $1528 million by 2033, exhibiting a CAGR of 17.2% during 2025-2033. The market has witnessed steady growth due to factors such as the increasing adoption of cloud computing, advancements in GIS technology, and the need for real-time data analysis. The market is segmented based on application (government, enterprises) and type (SaaS, PaaS, IaaS). Key drivers of the GIS in the Cloud market include the growing need for geospatial data, the increasing adoption of mobile GIS applications, and the rising demand for real-time data analysis. Major trends in the market include the integration of GIS with other technologies such as IoT and AI, the development of new cloud-based GIS platforms, and the increasing use of open source GIS software. The market is also expected to benefit from the increasing adoption of cloud computing in emerging economies, as well as the growing demand for GIS services in sectors such as natural resource management, urban planning, and disaster response.

  10. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  11. a

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +2more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV
    Explore at:
    Dataset updated
    Oct 28, 2019
    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  12. Open Source GIS Training for Improved Protected Area Planning and Management...

    • rmi-data.sprep.org
    • pacific-data.sprep.org
    pdf, zip
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in the Republic of the Marshall Islands [Dataset]. https://rmi-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-republic-marshall
    Explore at:
    pdf(5213196), pdf(1167275), zip(151511128), pdf(3658659)Available download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Bradley Eichelberger, SPREP PIPAP GIS Consultant
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    176.18637084961 3.4531078732957)), POLYGON ((159.92660522461 3.4531078732957, 176.18637084961 16.662506225635, 159.92660522461 16.662506225635, Marshall Islands
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on August 17-21, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  13. g

    GeoStrat Jurassic Report (open source version)

    • gimi9.com
    • data.europa.eu
    • +2more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoStrat Jurassic Report (open source version) [Dataset]. https://gimi9.com/dataset/eu_geostrat-jurassic-report-open-source-version2
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben This non-exclusive report was purchased by the NSTA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the NSTA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities. The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report. The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format for import into different interpretation platforms. In addition, the NSTA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in shapefile format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations who are using non-ESRI ArcGIS GIS software. As part of this process, the Geostrat well names have been matched as far as possible to the NSTA well names from the NSTA Offshore Wells shapefile (as provided on the NSTA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the NSTA. An ESRI ArcGIS version of this delivery, including geodatabases, layer files and map documents for well tops, stratigraphic interpretations and sequence maps is available on the NSTA’s Open Data website and is recommended for use with ArcGIS. All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the NSTA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.

  14. S

    Software Geographic Information Systems Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Software Geographic Information Systems Report [Dataset]. https://www.archivemarketresearch.com/reports/software-geographic-information-systems-16497
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    AMA Research & Media LLP
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Software Geographic Information Systems (GIS) market is thriving, with a market size of XXX million in 2025 and a CAGR of XX% projected for the period of 2025-2033. Digitalization, increasing demand for spatial data and analytics, and advancements in cloud computing and data storage are the primary drivers of this growth. Furthermore, the incorporation of GIS in various sectors such as disaster management, land information management, and infrastructure management is contributing to the market's expansion. Key trends shaping the market include the rise of mobile and cloud-based GIS, the integration of artificial intelligence and machine learning for enhanced data analysis, and the adoption of open-source GIS platforms. Despite these growth factors, challenges such as data privacy concerns, a lack of skilled GIS professionals, and budgetary constraints for implementing GIS solutions may hinder market expansion. Key players in the market include Pasco Corporation, Ubisense Group, Beijing SuperMap Software, Hexagon, and Schneider Electric, among others. North America holds a significant market share, followed by Europe and Asia Pacific.

  15. G

    Geographic Information Systems (GIS) Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Geographic Information Systems (GIS) Report [Dataset]. https://www.archivemarketresearch.com/reports/geographic-information-systems-gis-48887
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    AMA Research & Media LLP
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Geographic Information Systems (GIS) market is projected to reach a value of USD 2890.3 million by 2033, expanding at a CAGR of 5.3% during the forecast period (2025-2033). The growing demand for GIS solutions for urban planning, infrastructure management, environmental monitoring, and disaster response is driving market growth. Additionally, the increasing adoption of cloud-based GIS platforms and the integration of GIS with other technologies such as artificial intelligence (AI) and the Internet of Things (IoT) are contributing to the market's expansion. Key trends shaping the GIS market include the rise of location intelligence, which involves using GIS data to make informed decisions about spatial relationships and patterns. The increasing availability of open-source GIS software and data is also driving market growth, as it enables organizations to access and utilize GIS without significant upfront costs. Furthermore, the adoption of GIS by governments and businesses for decision-making and planning purposes is contributing to the market's expansion. Among the application segments, transport and logistics are expected to witness significant growth as GIS plays a crucial role in optimizing routes, managing fleet operations, and improving supply chain efficiency.

  16. World - Diffuse Horizontal Irradiation (DIF) GIS Data, (Global Solar Atlas)

    • data.subak.org
    • energydata.info
    geotiff
    Updated Feb 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2023). World - Diffuse Horizontal Irradiation (DIF) GIS Data, (Global Solar Atlas) [Dataset]. https://data.subak.org/dataset/world-diffuse-horizontal-irradiation-dif-gis-data-global-solar-atlas
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains diffuse horizontal irradiation (DIF) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characeristics: DIF LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 198.94 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month *For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) *For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

  17. S

    Data from: An Open-Source Automatic Survey of Green Roofs in London using...

    • data.subak.org
    • zenodo.org
    csv
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University College London (2023). An Open-Source Automatic Survey of Green Roofs in London using Segmentation of Aerial Imagery: Dataset [Dataset]. https://data.subak.org/dataset/an-open-source-automatic-survey-of-green-roofs-in-london-using-segmentation-of-aerial-imagery-d
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    University College London
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    London
    Description

    This archive contains geospatial data, as well as the code used to generate the geospatial data.

    The geospatial data consists of georeferenced polygons identifying areas which are covered by green roofs in London (GBR) generated from 2019 aerial imagery.

    The data is described in detail in the manuscript An Open-Source Automatic Survey of Green Roofs in London using Segmentation of Aerial Imagery. See abstract below.

    Archive contents:

    geospatial\_data/green\_roofs\_220719.geojson is the main result, which can be opened in any GIS program.

    segmentation\_code contains the Python code used to produce the segmentation from the aerial imagery.

    analysis\_code contains the Python code used to produce the plots and tables for the paper, as well as the OS intersection postprocessing step.

    GeoJSON format:

    GeoJSON is a format for encoding geospatial data, see https://geojson.org/.

    GeoJSON can be read using GIS programs including ArcGIS, QGIS, OGR.

    Input data availability:

    Unfortunately the aerial imagery and building footprint data cannot be shared directly, as you will require the proper license. Both can be found at Digimap provided your institution has the license.

    Abstract:

    Green roofs are roofs incorporating a deliberate layer of growing substrate and vegetation. They can reduce both indoor and outdoor temperatures, so are often presented as a strategy to reduce urban overheating, which is expected to increase due to climate change. In addition, they could help decrease the cooling energy demand of buildings thereby contributing to energy and emissions reductions and provide benefits to biodiversity and human well-being. To guide the design of more sustainable and climate resilient buildings and neighbourhoods, there is a need to assess the existing status of green roof coverage and explore the potential for future implementation. Therefore, accurate information on the prevalence and characteristics of existing green roofs is required to estimate any effect of green roofs on temperatures (or other phenomena), but this information is currently lacking. Using a machine-learning algorithm based on U-Net to segment aerial imagery, we surveyed the area and coverage of green roofs in London, producing a geospatial dataset. We estimate that there was 0.19 km^2 of green roof in the Central Activities Zone (CAZ) of London, (0.81 km^2) in Inner London, and (1.25 km^2) in Greater London in the year 2019. This corresponds to 1.6% of the total building footprint area in the CAZ, and 1.0% in Inner London. There is a relatively higher concentration of green roofs in the City of London (the historic financial district), covering 3.1% of the total building footprint area. The survey covers 1463 km^2 of Greater London, making this the largest open automatic survey of green roofs in any city. We improve on previous studies by including more negative examples in the training data, by experimenting with different data augmentation methods, and by requiring coincidence between vector building footprints and green roof patches. This dataset will enable future work examining the distribution and potential of green roofs in London and on urban climate modelling.

  18. m

    Data for: Gravity model toolbox: an automated and open-source ArcGIS tool to...

    • data.mendeley.com
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kunyuan Wanghe (2020). Data for: Gravity model toolbox: an automated and open-source ArcGIS tool to build and prioritize the corridors of urban green space for biodiversity conservation [Dataset]. http://doi.org/10.17632/wprcdgmp7x.1
    Explore at:
    Dataset updated
    Mar 19, 2020
    Authors
    Kunyuan Wanghe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Gravity model toolbox, a programmed ArcGIS tool to map and prioritize the potential corridors of urban green space.

  19. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  20. e

    World - Direct Normal Irradiation (DNI) GIS Data, (Global Solar Atlas) -...

    • energydata.info
    Updated Nov 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). World - Direct Normal Irradiation (DNI) GIS Data, (Global Solar Atlas) - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-direct-normal-irradiation-dni-gis-data-global-solar-atlas
    Explore at:
    Dataset updated
    Nov 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains direct normal irradiation (DNI) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characteristics: DNI LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 343.99 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://home-ecgis.hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82

QGIS - Open Source GIS Software

Explore at:
29 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2018
Dataset authored and provided by
Eaton County Michigan
Description

This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

Search
Clear search
Close search
Google apps
Main menu