88 datasets found
  1. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • vanuatu-data.sprep.org
    pdf, zip
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in Vanuatu [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-vanuatu
    Explore at:
    pdf(3536989), zip, pdf(5713678), pdf(889630)Available download formats
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Vanuatu, 171.96762084961 -9.000382438291, 164.40902709961 -9.000382438291, POLYGON ((164.40902709961 -21.602534873927, 171.96762084961 -21.602534873927))
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on February 26-28, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  2. Digital Surficial Geologic-GIS Map of Minuteman National Historical Site and...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Surficial Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts (NPS, GRD, GRI, MIMA, MIMA_surficial digital map) adapted from a U.S. Geological Survey Open-File Report map by Stone and Stone (2006) [Dataset]. https://catalog.data.gov/dataset/digital-surficial-geologic-gis-map-of-minuteman-national-historical-site-and-vicinity-mass
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Massachusetts
    Description

    The Digital Surficial Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_surficial_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_surficial_geology_metadata.txt or mima_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. a

    Utah Open Source Places

    • gis-support-utah-em.hub.arcgis.com
    • opendata.gis.utah.gov
    Updated Mar 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2022). Utah Open Source Places [Dataset]. https://gis-support-utah-em.hub.arcgis.com/maps/utah::utah-open-source-places
    Explore at:
    Dataset updated
    Mar 18, 2022
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    Last update: August 20, 2024OverviewThis point data was generated and filtered from OpenStreetMap and is intended to represent places of interest in the state of Utah. These may include businesses, restaurants, places of worship, airports, parks, schools, event centers, apartment complexes, hotels, car dealerships…almost anything that you can find in OpenStreetMap (OSM). There are over 23,000 features in the original dataset (March 2022) and users can directly contribute to it through openstreetmap.org. This data is updated approximately once every month and will likely continue to grow over time with user activity.Data SourcesThe original bulk set of OSM data for the state of Utah is downloaded from Geofabrik: https://download.geofabrik.de/north-america/us/utah-latest-free.shp.zipAdditional attributes for the Utah features are gathered via the Overpass API using the following query: https://overpass-turbo.eu/s/1geRData Creation ProcessThe Open Source Places layer is created by a Python script that pulls statewide OSM data from a nightly archive provided by Geofabrik (https://www.geofabrik.de/data/download.html). The archive data contains nearly 20 shapefiles, some that are relevant to this dataset and some that aren't. The Open Source Places layer is built by filtering the polygon and point data in those shapefiles down to a single point feature class with specific categories and attributes that UGRC determines would be of widest interest. The polygon features (buildings, areas, complexes, etc.) are converted to points using an internal centroid. Spatial filtering is done as the data from multiple shapefiles is combined into a single layer to minimize the occurrence of duplicate features. (For example, a restaurant can be represented in OSM as both a point of interest and as a building polygon. The spatial filtering helps reduce the chances that both of these features are present in the final dataset.) Additional de-duplication is performed by using the 'block_id' field as a spatial index, to ensure that no two features of the same name exist within a census block. Then, additional fields are created and assigned from UGRC's SGID data (county, city, zip, nearby address, etc.) via point-in-polygon and near analyses. A numeric check is done on the 'name' field to remove features where the name is less than 3 characters long or more than 50% numeric characters. This eliminates several features derived from the buildings layer where the 'name' is simply an apartment complex building number (ex: 3A) or house number (ex: 1612). Finally, additional attributes (osm_addr, opening_hours, phone, website, cuisine, etc.) are pulled from the Overpass API (https://wiki.openstreetmap.org/wiki/Overpass_API) and joined to the filtered data using the 'osm_id' field as the join key.Field Descriptionsaddr_dist - the distance (m) to the nearest UGRC address point within 25 mosm_id - the feature ID in the OSM databasecategory - the feature's data class based on the 4-digit code and tags in the OSM databasename - the name of the feature in the OSM databasecounty - the county the feature is located in (assigned from UGRC's county boundaries)city - the city the feature is located in (assigned from UGRC's municipal boundaries)zip - the zip code of the feature (assigned from UGRC's approximation of zip code boundaries)block_id - the census block the feature is located in (assigned from UGRC's census block boundaries)ugrc_addr - the nearest address (within 25 m) from the UGRC address point databasedisclaimer - a note from UGRC about the ugrc_near_addr fieldlon - the approximate longitude of the feature, calculated in WGS84 EPSG:4326lat - the approximate latitude of the feature, calculated in WGS84 EPSG:4326amenity - the amenity available at the feature (if applicable), often similar to the categorycuisine - the type of food available (if applicable), multiple types are separated by semicolons (;)tourism - the type of tourist location, if applicable (zoo, viewpoint, hotel, attraction, etc.)shop - the type of shop, if applicablewebsite - the feature's website in the OSM database, if availablephone - the feature's phone number(s) in the OSM database, if availableopen_hours - the feature's operating hours in the OSM database, if availableosm_addr - the feature's address in the OSM database, if availableMore information can be found on the UGRC data page for this layer:https://gis.utah.gov/data/society/open-source-places/

  4. m

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53977
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.

  5. e

    Open Spatial Data Sources in New Zealand

    • gisinschools.eagle.co.nz
    • resources-gisinschools-nz.hub.arcgis.com
    Updated Aug 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2017). Open Spatial Data Sources in New Zealand [Dataset]. https://gisinschools.eagle.co.nz/documents/19cb4251af5948bdab0c7e1881ab50da
    Explore at:
    Dataset updated
    Aug 31, 2017
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Area covered
    New Zealand
    Description

    Document outlining Open Spatial Data Sources in New Zealand with instructions on how to add them into ArcGIS Online for use in the NZ school classroom. This document has been specially written to assist teachers who are creating their own spatial analysis lessons. Please ensure that you peruse the use constraints applied to the individual items of spatial data before utilising them in the classroom.

  6. e

    World - High Resolution Solar Resource (GHI, DIF, GTI, DNI) GIS Data,...

    • energydata.info
    Updated Nov 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). World - High Resolution Solar Resource (GHI, DIF, GTI, DNI) GIS Data, (Global Solar Atlas) - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-high-resolution-solar-resource-ghi-dif-gti-dni-gis-data-global-solar-atlas
    Explore at:
    Dataset updated
    Nov 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains solar resource data for: direct normal irradiation (DNI), global horizontal irradiation (GHI), diffuse horizontal irradiation data (DIF), and global irradiation for optimally tilted surfaces (GTI), all in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m). Due to the large amount of data, the coverage has been divided into eight segments. Four segments for the North hemisphere: WWN (West-west-north), WN (West-north), EN (East-north), EEN (East-east-north). Analogically four segments for the South hemisphere: WWS, WS, ES, EES. The data is hyperlinked under 'resources' with the following characteristics: DNI LTAy_AvgDailyTotals (GeoTIFF) Data format: raster (gridded), GEOTIFF File size : 343.99 MB For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

  7. d

    Digital Geomorphic-GIS Map of the Shackleford Banks, North Carolina...

    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of the Shackleford Banks, North Carolina (1:10,000 scale 2012 imagery) (NPS, GRD, GRI, CALO, SHKB_geomorphology digital map) adapted from a East Carolina University unpublished report and GIS data by Riggs, Ames and Mallinson (2015) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-the-shackleford-banks-north-carolina-1-10000-scale-2012-imag
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Service
    Area covered
    Shackleford Banks, North Carolina
    Description

    The Digital Geomorphic-GIS Map of the Shackleford Banks, North Carolina (1:10,000 scale 2012 imagery) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (shkb_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (shkb_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (shkb_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (shkb_geomorphology_metadata.txt or shkb_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. GIS Market Analysis North America, Europe, APAC, South America, Middle East...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio, GIS Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Germany, UK, Canada, Brazil, Japan, France, South Korea, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-industry-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Germany, France, United Arab Emirates, Canada, United Kingdom, United States, Brazil, Japan, Global
    Description

    Snapshot img

    GIS Market Size 2025-2029

    The gis market size is forecast to increase by USD 24.07 billion at a CAGR of 20.3% between 2024 and 2029.

    The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more accurate and efficient spatial analysis for infrastructure planning and management. A key trend in the market is the expanding application of GIS solutions in soil and water management, as organizations seek to mitigate environmental risks and optimize resource utilization. However, the lack of comprehensive planning and insufficient resources for implementation can hinder the successful adoption of GIS technologies. Companies looking to capitalize on this market opportunity should focus on providing implementation support and developing user-friendly solutions to address these challenges. Effective collaboration between GIS and BIM companies, as well as strategic partnerships with industry players, can further enhance market penetration and drive innovation.

    What will be the Size of the GIS Market during the forecast period?

    Request Free SampleThe Geographic Information System (GIS) market in the United States is experiencing significant growth, driven by the increasing demand for advanced mapping tools and geospatial technology in various sectors. The market's size is substantial, with applications ranging from soil management and precision farming to infrastructure design, urban planning, and disaster management. Key growth factors include the integration of real-time analytics, video games, and mobile devices into GIS solutions, as well as the adoption of cloud technology and 4D GIS software. The market is also influenced by the increasing importance of location intelligence in industries such as oil and gas, transportation, and smart city planning. Moreover, the use of GIS technology in environmental monitoring, green buildings, and water resources management is gaining traction due to the growing awareness of sustainability and the need for effective resource management. Additionally, the integration of GIS with Building Information Modeling (BIM) and Augmented Reality platforms is expected to further expand the market's reach and potential applications. Overall, the market is poised for continued growth and innovation, driven by the increasing demand for accurate, timely, and actionable geospatial data.

    How is this GIS Industry segmented?

    The gis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesTypeTelematics and navigationMappingSurveyingLocation-based servicesDeviceDesktopMobileGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKAPACChinaJapanSouth KoreaSouth AmericaBrazilMiddle East and AfricaUAE

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.The Global Geographic Information System (GIS) market encompasses software for desktops, mobile devices, cloud solutions, and servers. Industry-specific software dominates, with commercial companies providing open-source alternatives for smaller applications, mitigating counterfeit threats. However, the widespread adoption of open-source GIS software poses a challenge. Concurrently, cloud-based GIS software adoption is an emerging trend. Yet, the absence of standardization and interoperability issues hinder its widespread use. Key applications include soil mapping, virtual meters for business process management, precision farming, GIS collectors, green buildings, urban planning, and aerial photography. Additionally, the retail sector, location-based services, water quality management, project management, urban growth assessment, video games, and smart cities utilize GIS. Furthermore, satellite imaging, remote sensors, mobile devices, accident analysis, augmented reality platforms, land acquisition, site selection, and government sector applications are prevalent. The market dynamics include the increasing use of GNSS/GPS antennas, enterprise resource planning, smartphone adoption, grain production, transportation sector, environmental impact assessment, homeland security, and sustainable urban development. Cloud technology, community planning, traffic modeling, architecture and construction, smart city planning, land zone classification, 4D GIS software, and oil and gas industries also leverage geospatial technology. In , the market is diverse, with various applications in different sectors. While open-source software adoption challenges the market, cloud-based GIS software adoption is an emerging trend. Standardization and interoperability issues remain major barriers. Th

  9. OpenStreetMap

    • esriindia.hub.arcgis.com
    • bbmaps.mapcram.com
    • +18more
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri India SAAS App (2024). OpenStreetMap [Dataset]. https://esriindia.hub.arcgis.com/maps/671a954016794bef88b76ac215ec5fef
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri India SAAS App
    License

    Attribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
    License information was derived automatically

    Description

    This web map references the live tiled map service from the OpenStreetMap (OSM) project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: https://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in ESRI products under a Creative Commons Attribution-ShareAlike license. Tip: This service is one of the basemaps used in the ArcGIS.com map viewer. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10. Tip: Here are some well known locations as they appear in this web map, accessed by launching the web map with a URL that contains location parameters: Athens, Cairo, Jakarta, Moscow, Mumbai, Nairobi, Paris, Rio De Janeiro, Shanghai

  10. a

    Digital Geohazards-GIS Map of John Muir National Historic Site and Vicinity,...

    • data.amerigeoss.org
    • catalog.data.gov
    api, pdf, zip
    Updated Feb 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Digital Geohazards-GIS Map of John Muir National Historic Site and Vicinity, California (NPS, GRD, GRI, JOMU, JOMU_geohazard digital map) adapted from a California Department of Conservation, Division of Mines and Geology Open-File Report map by Haydon (1995) [Dataset]. https://data.amerigeoss.org/dataset/digital-geohazards-gis-map-of-john-muir-national-historic-site-and-vicinity-california-nps
    Explore at:
    zip, api, pdfAvailable download formats
    Dataset updated
    Feb 17, 2022
    Dataset provided by
    United States
    Description

    The Digital Geologic-GIS Map of John Muir National Historic Site and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jomu_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google The Digital Geohazards-GIS Map of John Muir National Historic Site and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jomu_geohazard.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jomu_geohazard.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jomu_geohazard.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (jomu_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (jomu_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jomu_geohazard_metadata_faq.pdf). Please read the jomu_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: California Department of Conservation, Division of Mines and Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jomu_geohazard_metadata.txt or jomu_geohazard_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google

  11. Digital Geologic-GIS Map of Bainbridge Island, Washington (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jul 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Bainbridge Island, Washington (NPS, GRD, GRI, BAIS, BAIS digital map) adapted from a U.S. Geological Survey Open-File Report map by Haugerud (2005) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-bainbridge-island-washington-nps-grd-gri-bais-bais-digital-map
    Explore at:
    Dataset updated
    Jul 21, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Bainbridge Island, Haugerud, Washington
    Description

    The Digital Geologic-GIS Map of Bainbridge Island, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (bais_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (bais_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bais_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bais_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bais_geology_metadata_faq.pdf). Please read the bais_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bais_geology_metadata.txt or bais_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. Digital Surficial Geologic-GIS Map of Isle Au Haut and Immediate Vicinity,...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Feb 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Surficial Geologic-GIS Map of Isle Au Haut and Immediate Vicinity, Acadia National Park, Maine (NPS, GRD, GRI, ACAD, ISHA_surficial digital map) adapted from a Maine Geological Survey Open-File Map by Borns, Smith and Thompson (1974) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-surficial-geologic-gis-map-of-isle-au-haut-and-immediate-vicinity-acadia-national--8f24f
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Isle au Haut, Maine
    Description

    The Digital Surficial Geologic-GIS Map of Isle Au Haut and Immediate Vicinity, Acadia National Park, Maine is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (isha_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (isha_surficial_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (acad_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (acad_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (isha_surficial_geology_metadata_faq.pdf). Please read the acad_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Maine Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (isha_surficial_geology_metadata.txt or isha_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  13. Digital Geohazards-GIS Map of Everglades National Park and Vicinity (2005...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geohazards-GIS Map of Everglades National Park and Vicinity (2005 Mapping), Florida (NPS, GRD, GRI, EVER, EVER_geohazard digital map) adapted from a Florida Geological Survey Bulletin map by Arthur, Baker, Cichon, Wood and Rudin (2005) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geohazards-gis-map-of-everglades-national-park-and-vicinity-2005-mapping-florida-n
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Florida
    Description

    The Digital Geohazards-GIS Map of Everglades National Park and Vicinity (2005 Mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geohazard.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geohazard.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geohazard.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geohazard_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geohazard_metadata.txt or ever_geohazard_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  14. Digital Geologic-GIS Map of Ocmulgee Mounds National Historical Park and...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Ocmulgee Mounds National Historical Park and Vicinity, Georgia (NPS, GRD, GRI, OCMU, OCMU digital map) adapted from Georgia Department of Natural Resources maps by Hetrick and Friddell (1990), Hetrick (1990), LeGrand (1962) and a National Hydrography Dataset map by USGS (2018) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-ocmulgee-mounds-national-historical-park-and-vicinity-georgia-
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Georgia
    Description

    The Digital Geologic-GIS Map of Ocmulgee Mounds National Historical Park and Vicinity, Georgia is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ocmu_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ocmu_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ocmu_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ocmu_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ocmu_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ocmu_geology_metadata_faq.pdf). Please read the ocmu_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Georgia Department of Natural Resources and U. S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ocmu_geology_metadata.txt or ocmu_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:181,000 and United States National Map Accuracy Standards features are within (horizontally) 91.9 meters or 301.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  15. A

    Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • data.amerigeoss.org
    • s.cnmilf.com
    pdf, zip
    Updated Sep 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://data.amerigeoss.org/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map-1dc2
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Sep 16, 2020
    Dataset provided by
    United States
    Description

    The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  16. Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts (NPS, GRD, GRI, MIMA, mima_bedrock digital map) adapted from a Boston College Master's Thesis map by Langford and Hepburn (2007), a U.S. Geological Survey Bulletin map by Hansen (1956) and a U.S. Geological Survey Open-File Report map by Stone and Stone (2006) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-minuteman-national-historical-site-and-vicinity-massac
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Boston, Massachusetts
    Description

    The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. Digital Geologic-GIS Map of Yosemite Valley Glacial and Postglacial...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Yosemite Valley Glacial and Postglacial Deposits, California (NPS, GRD, GRI, YOSE, YOVA_glacial_and_surficial digital map) adapted from a U.S. Geological Survey Professional Paper map by Matthes (1930) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-yosemite-valley-glacial-and-postglacial-deposits-california-np
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Yosemite Valley, California
    Description

    The Digital Geologic-GIS Map of Yosemite Valley Glacial and Postglacial Deposits, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yova_glacial_and_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yova_glacial_and_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yova_glacial_and_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yose_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yova_glacial_and_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yova_glacial_and_surficial_geology_metadata_faq.pdf). Please read the yose_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yova_glacial_and_surficial_geology_metadata.txt or yova_glacial_and_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. d

    Digital Surficial Geologic-GIS Map of Fort Vancouver National Historic Site,...

    • datasets.ai
    • s.cnmilf.com
    • +1more
    33, 57
    Updated Sep 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Digital Surficial Geologic-GIS Map of Fort Vancouver National Historic Site, Washington (NPS, GRD, GRI, FOVA, FOVA_surficial digital map) adapted from a National Park Service unpublished digital data map by Cannon (2011) [Dataset]. https://datasets.ai/datasets/digital-surficial-geologic-gis-map-of-fort-vancouver-national-historic-site-washington-nps
    Explore at:
    57, 33Available download formats
    Dataset updated
    Sep 18, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Vancouver
    Description

    The Digital Surficial Geologic-GIS Map of Fort Vancouver National Historic Site, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (fova_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (fova_surficial_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (fova_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (fova_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (fova_surficial_geology_metadata_faq.pdf). Please read the fova_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: National Park Service. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (fova_surficial_geology_metadata.txt or fova_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:20,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. Digital Geologic-GIS Map of Cape Cod National Seashore and Vicinity,...

    • catalog.data.gov
    Updated Nov 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Cape Cod National Seashore and Vicinity, Massachusetts (NPS, GRD, GRI, CACO, CACO digital map) adapted from a U.S. Geological Survey Open-File Report by Stone and DiGiacomo (2010), and Geologic Quadrangle Maps by Oldale, Koteff and Hartshorn (1971), Oldale (1970), Oldale (1968), and Koteff, Oldale and Hartshorn (1967) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-cape-cod-national-seashore-and-vicinity-massachusetts-nps-grd-
    Explore at:
    Dataset updated
    Nov 2, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Cape Cod, Massachusetts
    Description

    The Digital Geologic-GIS Map of Cape Cod National Seashore and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (caco_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (caco_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (caco_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caco_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (caco_geology_metadata_faq.pdf). Please read the caco_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (caco_geology_metadata.txt or caco_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  20. d

    Digital Geologic-GIS Map of the Frank Island 15' Quadrangle, Wyoming (NPS,...

    • datasets.ai
    • catalog.data.gov
    33, 57
    Updated Aug 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Digital Geologic-GIS Map of the Frank Island 15' Quadrangle, Wyoming (NPS, GRD, GRI, YELL, FRIS digital map) adapted from a U.S. Geological Survey unpublished digital data map by the U.S. Geological Survey, and a U.S. Geological Survey Geologic Quadrangle Map by Blank, Prostka, Keefer, and Christiansen (1974) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-the-frank-island-15-quadrangle-wyoming-nps-grd-gri-yell-fris-d
    Explore at:
    57, 33Available download formats
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Frank Island
    Description

    The Digital Geologic-GIS Map of the Frank Island 15' Quadrangle, Wyoming is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (fris_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (fris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (fris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (fris_geology_metadata_faq.pdf). Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (fris_geology_metadata.txt or fris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in Vanuatu [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-vanuatu
Organization logo

Open Source GIS Training for Improved Protected Area Planning and Management in Vanuatu

Explore at:
pdf(3536989), zip, pdf(5713678), pdf(889630)Available download formats
Dataset updated
Feb 22, 2025
Dataset provided by
Pacific Regional Environment Programmehttps://www.sprep.org/
License

Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically

Area covered
Vanuatu, 171.96762084961 -9.000382438291, 164.40902709961 -9.000382438291, POLYGON ((164.40902709961 -21.602534873927, 171.96762084961 -21.602534873927))
Description

Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on February 26-28, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

Search
Clear search
Close search
Google apps
Main menu