100+ datasets found
  1. d

    Data and Results for GIS-based Identification of Areas that have Resource...

    • datasets.ai
    • data.usgs.gov
    • +1more
    55
    Updated Aug 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Data and Results for GIS-based Identification of Areas that have Resource Potential for Sediment-hosted Pb-Zn Deposits in Alaska [Dataset]. https://datasets.ai/datasets/data-and-results-for-gis-based-identification-of-areas-thathave-resource-potential-for-sed
    Explore at:
    55Available download formats
    Dataset updated
    Aug 13, 2024
    Dataset authored and provided by
    Department of the Interior
    Description

    This data release contains the analytical results and the evaluated source data files of a geospatial analysis for identifying areas in Alaska that may have potential for sediment-hosted Pb-Zn (lead-zinc) deposits. The spatial analysis is based on queries of statewide source datasets Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. The results in geodatabase format are in SedPbZn_Results_gdb.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points scored for each source data layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for sediment-hosted Pb-Zn deposits for each HUC. The data is described by FGDC metadata. An mxd file, layer file, and cartographic feature classes are provided for display of the results in ArcMap. Files sedPbZn_scoring_tables.pdf (list of the scoring parameters for the analysis) and sedPbZn_Results_gdb_README.txt (description of the files in this download package) are included. 2. The results in shapefile format are in SedPbZn_Results_shape.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points scored for each source data layer query, the accumulative score, and designation for high, medium, or low potential and high, medium, or low certainty for sediment-hosted Pb-Zn deposits for each HUC. The results are also provided as a CSV file. The data is described by FGDC metadata. Files sedPbZn_scoring_tables.pdf (list of the scoring parameters for the analysis) and sedPbZn_Results_shape_README.txt (description of the files in this download package) are included. 3. The source data in geodatabase format are in SedPbZn_SourceData_gdb.zip. Data layers include AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds, with FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are two python scripts 1) to score the ARDF records based on the presence of certain keywords, and 2) to evaluate the ARDF, AGDB3, and lithology layers for the potential for sediment-hosted Pb-Zn deposits within subwatershed polygons. Users may modify the scripts to design their own analyses. Files sedPbZn_scoring_table.pdf (list of the scoring parameters for the analysis) and sedPbZn_sourcedata_gdb_README.txt (description of the files in this download package) are included. 4. The source data in shapefile and CSV format are in SedPbZn_SourceData_shape.zip. Data layers include ARDF and lithology from SIM3340, and HUC subwatersheds, with FGDC metadata. The ARDF keyword tables available in the geodatabase package are presented here as CSV files. All data files are described with the FGDC metadata. Files sedPb_Zn_scoring_table.pdf (list of the scoring parameters for the analysis) and sedPbZn_sourcedata_shapefile_README.txt (description of the files in this download package) are included. 5. Appendices 2, 3 and 4, which are cited by the larger work OFR2020-1147. Files are presented in XLSX and CSV formats.

  2. Digital Surficial Geologic-GIS Map of Tuzigoot National Monument, Arizona...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Surficial Geologic-GIS Map of Tuzigoot National Monument, Arizona (NPS, GRD, GRI, TUZI, CLAR digital map) adapted from a Arizona Geological Survey Open-File Report map by House and Pearthree (1993) [Dataset]. https://catalog.data.gov/dataset/digital-surficial-geologic-gis-map-of-tuzigoot-national-monument-arizona-nps-grd-gri-tuzi-
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Arizona
    Description

    The Unpublished Digital Surficial Geologic-GIS Map of Tuzigoot National Monument, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (clar_surficial_geology.gdb), a 10.1 ArcMap (.MXD) map document (clar_surficial_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (moca_tuzi_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (moca_tuzi_geology_gis_readme.pdf). Please read the moca_tuzi_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Arizona Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (clar_surficial_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/tuzi/clar_surficial_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Tuzigoot National Monument.

  3. D

    Collins Creek Flood Study - Post Processed Outputs (GIS, WaterRide, ASC,...

    • data.nsw.gov.au
    • researchdata.edu.au
    Updated Mar 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wollongong City Council (2024). Collins Creek Flood Study - Post Processed Outputs (GIS, WaterRide, ASC, PDF) [Dataset]. https://data.nsw.gov.au/data/dataset/fdp-collins-creek-flood-study-post-processed-outputs-gis-waterride-asc-pdf
    Explore at:
    Dataset updated
    Mar 25, 2024
    Dataset provided by
    Wollongong City Council
    Description

    Post processed outputs used in figures, contains asc grid, GIS files, as well as WaterRide outputs.

  4. A

    NREL GIS Data: Seasonal and diurnal data from Afghanistan surface weather...

    • data.amerigeoss.org
    • data.wu.ac.at
    zip
    Updated Jul 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). NREL GIS Data: Seasonal and diurnal data from Afghanistan surface weather stations [Dataset]. https://data.amerigeoss.org/de/dataset/nrel-gis-data-seasonal-and-diurnal-data-from-afghanistan-surface-weather-stations
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States[old]
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Afghanistan
    Description

    This dataset was developed by the National Renewable Energy Laboratory (NREL) for the U.S. Agency for International Development's (USAID) South Asia Regional Initiative for Energy Cooperation (SARI/E). The dataset contains graphical files of seasonal and diurnal data from over 50 surface weather stations in .pdf format in Afghanistan. The data were output in Geographic Information Systems (GIS) format and incorporated into a Geospatial Toolkit (GsT). The GsT allows the user to examine the resource data in a geospatial context along with other key information relevant to renewable energy development, such as transportation networks, transmission corridors, existing power facilities, load centers, terrain conditions, and land use.

    License Info

    DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.

    Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.

    THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.

    The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

  5. a

    BLM Natl Story Map PDF Publication Team Recommendation for ArcGIS Hub

    • blm-gis-open-data-blmtest.hub.arcgis.com
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ** TEST TEST TEST *** DOI BLM *** TEST TEST TEST *** (2021). BLM Natl Story Map PDF Publication Team Recommendation for ArcGIS Hub [Dataset]. https://blm-gis-open-data-blmtest.hub.arcgis.com/datasets/blm-natl-story-map-pdf-publication-team-recommendation-for-arcgis-hub
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    ** TEST TEST TEST *** DOI BLM *** TEST TEST TEST ***
    Area covered
    Description

    This PDF was created as an output file representing a Story Map that describes the work of the GIS Modernization Publication Team to discuss geospatial external publication challenges faced by BLM, and evaluate software to make recommendations toward a modern updated system. Two existing workflows are currently employed where States publish to Navigator and BLM National publishes to the Landscape Approach Data Portal. BLM publication sites harvest to Data.doi.gov to create the inventory of publicly available data. The GIS Modernization Project has made it possible for BLM to evaluate existing processes and available software solutions for external publication in alignment with the enterprise GIS deployment model and to look for efficiencies in external publishing workflows. The Publication Team worked through a variety of assigned tasks to evaluate and make a final recommendation on an new external publication environment.

  6. Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS,...

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS, GRD, GRI, MORA, MORA_geology digital map) adapted from a U.S. Geological Survey Miscellaneous Geologic Investigations Map by Fiske, Hopson and Waters (1964) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-mount-rainier-national-park-washington-nps-grd-gri-mora-mora-g
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.

  7. m

    Software Quality Grades for GIS Software

    • data.mendeley.com
    • narcis.nl
    Updated Aug 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spencer Smith (2017). Software Quality Grades for GIS Software [Dataset]. http://doi.org/10.17632/6kprpvv7r7.1
    Explore at:
    Dataset updated
    Aug 6, 2017
    Authors
    Spencer Smith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data provides a summary of the state of development practice for Geographic Information Systems (GIS) software (as of August 2017). The summary is based on grading a set of 30 GIS products using a template of 56 questions based on 13 software qualities. The products range in scope and purpose from a complete desktop GIS systems, to stand-alone tools, to programming libraries/packages.

    The template used to grade the software is found in the TabularSummaries.zip file. Each quality is measured with a series of questions. For unambiguity the responses are quantified wherever possible (e.g.~yes/no answers). The goal is for measures that are visible, measurable and feasible in a short time with limited domain knowledge. Unlike a comprehensive software review, this template does not grade on functionality and features. Therefore, it is possible that a relatively featureless product can outscore a feature-rich product.

    A virtual machine is used to provide an optimal testing environments for each software product. During the process of grading the 30 software products, it is much easier to create a new virtual machine to test the software on, rather than using the host operating system and file system.

    The raw data obtained by measuring each software product is in SoftwareGrading-GIS.xlsx. Each line in this file corresponds to between 2 and 4 hours of measurement time by a software engineer. The results are summarized for each quality in the TabularSummaries.zip file, as a tex file and compiled pdf file.

  8. g

    GIS Support on Campus

    • datasearch.gesis.org
    • dataverse-staging.rdmc.unc.edu
    Updated Jan 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Slemons, Megan (2020). GIS Support on Campus [Dataset]. https://datasearch.gesis.org/dataset/httpsdataverse.unc.eduoai--hdl1902.2911806
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    Slemons, Megan
    Description

    These are the results of the survey "GIS Support on Campus", which was announced via email on May 13, 2014 to Gis4lib, HIGHERED-L, and MAPS-L. I have received requests to view the survey results; however, there was no statement about redistribution in the original survey, other than a presentation at the Esri Education GIS Conference 2014. To ensure confidentiality for survey respondents, these results have been anonimized or aggregated where needed. The PDF of my presentation slides from the 2014 Esri Education GIS Conference can be accessed at http://proceedings.esri.com/library/userconf/educ14/index.html. Search for "Bringing It All Together: Rethinking GIS Support on Campus". If you have specific questions, feel free to email me at megan.slemons@emory.edu.

  9. Attachment Viewer

    • noveladata.com
    Updated Jul 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2020). Attachment Viewer [Dataset]. https://www.noveladata.com/items/65dd2fa3369649529b2c5939333977a1
    Explore at:
    Dataset updated
    Jul 1, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Use the Attachment Viewer template to provide an app for users to explore a layer's features and review attachments with the option to update attribute data. Present your images, videos, and PDF files collected using ArcGIS Field Maps or ArcGIS Survey123 workflows. Choose an attachment-focused layout to display individual images beside your map or a map-focused layout to highlight your map next to a gallery of images. Examples: Review photos collected during emergency response damage inspections. Display the results of field data collection and support downloading images for inclusion in a report. Present a map of land parcel along with associated documents stored as attachments. Data requirements The Attachment Viewer template requires a feature layer with attachments. It includes the capability to view attachments of a hosted feature service or an ArcGIS Server feature service (10.8 or later). Currently, the app can display JPEG, JPG, PNG, GIF, MP4, QuickTime (.mov), and PDF files in the viewer window. All other attachment types are displayed as a link. Key app capabilities App layout - Choose between an attachment-focused layout, which displays one attachment at a time in the main panel of the app with the map on the side, or a map-focused layout, which displays the map in the main panel of the app with a gallery of attachments. Feature selection - Allows users to select features in the map and view associated attachments. Review data - Enable tools to review and update existing records. Zoom, pan, download images - Allow users to interact with and download attachments. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.

  10. A

    Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • data.amerigeoss.org
    api, zip
    Updated Sep 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2017). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from an American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://data.amerigeoss.org/sr/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map-1969
    Explore at:
    zip, apiAvailable download formats
    Dataset updated
    Sep 27, 2017
    Dataset provided by
    United States
    Area covered
    Santa Rosa Island, California
    Description

    The Unpublished Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (sris_geology.gdb), a 10.1 ArcMap (.MXD) map document (sris_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chis_gis_readme.pdf). Please read the chis_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chis/sris_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Channel Islands National Park.

  11. Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado (NPS, GRD, GRI, GRSA, GSAM digital map) adapted from U.S. Geological Survey Miscellaneous Field Studies Maps by Lindsey, Johnson, Bruce, Soulliere, Flores and Hafner (1985 to 1991) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/unpublished-digital-geologic-gis-map-of-parts-of-great-sand-dunes-national-park-and-preser
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Sangre de Cristo Mountains
    Description

    The Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gsam_geology.gdb), a 10.1 ArcMap (.mxd) map document (gsam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (grsa_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (grsa_geology_gis_readme.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Great Sand Dunes National Park and Preserve.

  12. Unpublished Digital Post-Hurricane Sandy (2015) Geomorphological-GIS Map of...

    • s.cnmilf.com
    • catalog.data.gov
    • +1more
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Post-Hurricane Sandy (2015) Geomorphological-GIS Map of the Jamaica Bay Unit, Gateway National Recreation Area, New York (NPS, GRD, GRI, GATE, JABA digital map) adapted from a Rutgers University Institute of Marine and Coastal Sciences unpublished digital data by Psuty, N.P., Schmelz, W., Greenberg, J. and Spahn A. (2015) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/unpublished-digital-post-hurricane-sandy-2015-geomorphological-gis-map-of-the-jamaica-bay-
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Jamaica Bay, New York
    Description

    The Unpublished Digital Post-Hurricane Sandy (2015) Geomorphological-GIS Map of the Jamaica Bay Unit, Gateway National Recreation Area, New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (jaba_geomorphology.gdb), a 10.1 ArcMap (.MXD) map document (jaba_geomorphology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geomorphology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gate_gis_readme.pdf). Please read the gate_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jaba_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/jaba_post-sandy_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.08 meters or 16.67 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  13. A

    Digital Geologic-GIS Map of Santa Cruz Island, California (NPS, GRD, GRI,...

    • data.amerigeoss.org
    api, zip
    Updated Sep 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2017). Digital Geologic-GIS Map of Santa Cruz Island, California (NPS, GRD, GRI, CHIS, SCIS digital map) adapted from an American Association of Petroleum Geologists Field Trip Guidebook map by the University of California, Santa Barbara Geological Survey (1969) [Dataset]. https://data.amerigeoss.org/ca/dataset/digital-geologic-gis-map-of-santa-cruz-island-california-nps-grd-gri-chis-scis-digital-map-1969
    Explore at:
    zip, apiAvailable download formats
    Dataset updated
    Sep 27, 2017
    Dataset provided by
    United States
    Area covered
    Santa Cruz Island, California
    Description

    The Unpublished Digital Geologic-GIS Map of Santa Cruz Island, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (scis_geology.gdb), a 10.1 ArcMap (.MXD) map document (scis_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chis_gis_readme.pdf). Please read the chis_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (scis_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chis/scis_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 11N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Channel Islands National Park.

  14. A

    Digital Quaternary Surficial and Bedrock Geologic-GIS Map of Anacapa Island,...

    • data.amerigeoss.org
    api, zip
    Updated Jul 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Digital Quaternary Surficial and Bedrock Geologic-GIS Map of Anacapa Island, California (NPS, GRD, GRI, CHIS, ANAC digital map) adapted from a U.S. Geological Survey Scientific Investigations Map by Schmidt, Minor, and Bedford (2017) [Dataset]. https://data.amerigeoss.org/pl/dataset/a922f34c-e3ce-457d-8b12-91fd1494f55a
    Explore at:
    api, zipAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States[old]
    Area covered
    Anacapa Island, California
    Description

    The Unpublished Digital Quaternary Surficial and Bedrock Geologic-GIS Map of Anacapa Island, California is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (anac_geology.gdb), a 10.1 ArcMap (.MXD) map document (anac_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chis_gis_readme.pdf). Please read the chis_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (anac_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chis/anac_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:12,000 and United States National Map Accuracy Standards features are within (horizontally) 6.1 meters or 20 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 11N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Channel Islands National Park.

  15. Unpublished Digital Surficial Geologic-GIS Map of the Sandy Hook and...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Surficial Geologic-GIS Map of the Sandy Hook and Longbranch Quadrangles and Vicinity, New Jersey (NPS, GRD, GRI, GATE, SHSF digital map) adapted from a New Jersey Geological Survey Open-file Maps by Stanford, S.D. (1995, 1999, 2000, 2002) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-surficial-geologic-gis-map-of-the-sandy-hook-and-longbranch-quadr-2000
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New Jersey
    Description

    The Unpublished Digital Surficial Geologic-GIS Map of the Sandy Hook and Longbranch Quadrangles and Vicinity, New Jersey is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (shsf_geology.gdb), a 10.1 ArcMap (.MXD) map document (shsf_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (shsf_gis_readme.pdf). Please read the shsf_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (shsf_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/shsf_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  16. a

    Hawaii Elevation Contours 100ft

    • hub.arcgis.com
    • opendata.hawaii.gov
    • +2more
    Updated Feb 4, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2014). Hawaii Elevation Contours 100ft [Dataset]. https://hub.arcgis.com/datasets/HiStateGIS::hawaii-elevation-contours-100ft/api
    Explore at:
    Dataset updated
    Feb 4, 2014
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] 100 ft contours for Hawaii Island.Source: USGS 1:24,000 Digital Elevation Models (DEM).Apr. 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of the 2016 GIS database conversion and were no longer needed.For additional information, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/cntrs100.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  17. a

    1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Molokai

    • hub.arcgis.com
    • opendata.hawaii.gov
    • +2more
    Updated Feb 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2021). 1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Molokai [Dataset]. https://hub.arcgis.com/datasets/cacee8d442624c719902ac599070f116
    Explore at:
    Dataset updated
    Feb 11, 2021
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.The State of Hawai‘i 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a). The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise. Statewide GIS Program staff extracted individual island layers for ease of downloading. A statewide layer is also available as a REST service, and is available for download from the Statewide GIS geoportal at https://geoportal.hawaii.gov/, or at the Program's legacy download site at https://planning.hawaii.gov/gis/download-gis-data-expanded/#009. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.

  18. Unpublished Digital Surficial Geologic-GIS Map of Gateway National...

    • catalog.data.gov
    • s.cnmilf.com
    • +3more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Surficial Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York (NPS, GRD, GRI, GATE, GWSF digital map) adapted from a New Jersey Geological Survey Digital Geodata Series map by Pristas, R. P. (2007) and a New York State Museum Map and Chart Series map by Cadwell, D.H., Connally, G.G., Dineen, R.J., Fleisher, P.J., Fuller, M.L., Sirkin, L., and Wiles, G.C. (1999) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-surficial-geologic-gis-map-of-gateway-national-recreation-area-and-vic
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Unpublished Digital Surficial Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gwsf_geology.gdb), a 10.1 ArcMap (.MXD) map document (gwsf_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gwsf_gis_readme.pdf). Please read the gwsf_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey and New York State Museum. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gwsf_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gwsf_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  19. Digital Geologic-GIS Map of Mount Desert Island and Vicinity, Acadia...

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Mount Desert Island and Vicinity, Acadia National Park, Maine (NPS, GRD, GRI, ACAD, ACAD digital map) adapted from a Maine Geological Survey Bulletin map by Gilman and Chapman (1988), and Lowell and Borns (1988) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-mount-desert-island-and-vicinity-acadia-national-park-maine-np
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Maine, Mount Desert Island
    Description

    The Unpublished Digital Geologic-GIS Map of Mount Desert Island and Vicinity, Acadia National Park, Maine is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (acad_geology.gdb), a 10.1 ArcMap (.mxd) map document (acad_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (acad_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (acad_geology_gis_readme.pdf). Please read the acad_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Maine Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (acad_geology_metadata.txt or acad_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 19N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Acadia National Park.

  20. d

    Digital Geologic-GIS Map of Moores Creek National Battlefield, North...

    • datasets.ai
    • catalog.data.gov
    33, 57
    Updated Sep 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Digital Geologic-GIS Map of Moores Creek National Battlefield, North Carolina (NPS, GRD, GRI, MOCR, MOCR digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series Map by Owens (1989) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-moores-creek-national-battlefield-north-carolina-nps-grd-gri-m
    Explore at:
    33, 57Available download formats
    Dataset updated
    Sep 26, 2024
    Dataset authored and provided by
    Department of the Interior
    Description

    The Unpublished Digital Geologic-GIS Map of Moores Creek National Battlefield, North Carolina is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (mocr_geology.gdb), a 10.1 ArcMap (.mxd) map document (mocr_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (mocr_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (mocr_geology_gis_readme.pdf). Please read the mocr_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mocr_geology_metadata.txt or mocr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Moores Creek National Battlefield.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of the Interior (2024). Data and Results for GIS-based Identification of Areas that have Resource Potential for Sediment-hosted Pb-Zn Deposits in Alaska [Dataset]. https://datasets.ai/datasets/data-and-results-for-gis-based-identification-of-areas-thathave-resource-potential-for-sed

Data and Results for GIS-based Identification of Areas that have Resource Potential for Sediment-hosted Pb-Zn Deposits in Alaska

Explore at:
55Available download formats
Dataset updated
Aug 13, 2024
Dataset authored and provided by
Department of the Interior
Description

This data release contains the analytical results and the evaluated source data files of a geospatial analysis for identifying areas in Alaska that may have potential for sediment-hosted Pb-Zn (lead-zinc) deposits. The spatial analysis is based on queries of statewide source datasets Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. The results in geodatabase format are in SedPbZn_Results_gdb.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points scored for each source data layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for sediment-hosted Pb-Zn deposits for each HUC. The data is described by FGDC metadata. An mxd file, layer file, and cartographic feature classes are provided for display of the results in ArcMap. Files sedPbZn_scoring_tables.pdf (list of the scoring parameters for the analysis) and sedPbZn_Results_gdb_README.txt (description of the files in this download package) are included. 2. The results in shapefile format are in SedPbZn_Results_shape.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points scored for each source data layer query, the accumulative score, and designation for high, medium, or low potential and high, medium, or low certainty for sediment-hosted Pb-Zn deposits for each HUC. The results are also provided as a CSV file. The data is described by FGDC metadata. Files sedPbZn_scoring_tables.pdf (list of the scoring parameters for the analysis) and sedPbZn_Results_shape_README.txt (description of the files in this download package) are included. 3. The source data in geodatabase format are in SedPbZn_SourceData_gdb.zip. Data layers include AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds, with FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are two python scripts 1) to score the ARDF records based on the presence of certain keywords, and 2) to evaluate the ARDF, AGDB3, and lithology layers for the potential for sediment-hosted Pb-Zn deposits within subwatershed polygons. Users may modify the scripts to design their own analyses. Files sedPbZn_scoring_table.pdf (list of the scoring parameters for the analysis) and sedPbZn_sourcedata_gdb_README.txt (description of the files in this download package) are included. 4. The source data in shapefile and CSV format are in SedPbZn_SourceData_shape.zip. Data layers include ARDF and lithology from SIM3340, and HUC subwatersheds, with FGDC metadata. The ARDF keyword tables available in the geodatabase package are presented here as CSV files. All data files are described with the FGDC metadata. Files sedPb_Zn_scoring_table.pdf (list of the scoring parameters for the analysis) and sedPbZn_sourcedata_shapefile_README.txt (description of the files in this download package) are included. 5. Appendices 2, 3 and 4, which are cited by the larger work OFR2020-1147. Files are presented in XLSX and CSV formats.

Search
Clear search
Close search
Google apps
Main menu