Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The GIS Software market is booming, projected to reach $45 billion by 2033 with a CAGR of 12%! Discover key trends, drivers, and restraints shaping this dynamic sector, including the impact of cloud computing, AI, and IoT. Leading companies and regional insights are analyzed in this comprehensive market report.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)
**When using the GIS data included in these map packages, please cite all of the following:
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018
OVERVIEW OF CONTENTS
This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:
Raw DEM and Soils data
Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)
DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.
DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.
Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)
Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).
Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).
ArcGIS Map Packages
Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).
Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.
Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).
Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).
For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."
LICENSES
Code: MIT year: 2019 Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton
CONTACT
Andrew Gillreath-Brown, PhD Candidate, RPA Department of Anthropology, Washington State University andrew.brown1234@gmail.com – Email andrewgillreathbrown.wordpress.com – Web
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map is one of a series of soil landscape maps that are intended for all of eastern and central NSW, based on standard 1:100,000 or 1:250,000 topographic sheets. The map provides an inventory of soil and landscape properties of the Blackville area and identifies major soil and landscape qualities and constraints. It integrates soil and topographic features into single units with relatively uniform land management requirements. Soils are described in terms of soil materials in addition to Australian Soil Classification and Great Soil Group systems. Related Datasets: The dataset area is also covered by the mapping of the Soil and Land Resources of the Liverpool Plains Catchment and Hydrogeological landscapes of NSW. Online Maps: This and related datasets can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area. Reference: Banks RG, 1998, Soil Landscapes of the Blackville 1:100,000 Sheet map and report, NSW Department of Land and Water Conservation, Sydney.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming GIS Mapping Tools market! Explore key trends, growth drivers, and leading companies in this $15 billion industry projected to reach $28 billion by 2033. Learn about cloud-based solutions, regional market shares, and the future of geographic information systems.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Discover the booming GIS software market! Explore its $15 billion valuation, 12% CAGR growth, key drivers, trends, and leading players like Esri & Google. This in-depth analysis reveals regional market share and future projections through 2033.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This submission contains an ESRI map package (.mpk) with an embedded geodatabase for GIS resources used or derived in the Nevada Machine Learning project, meant to accompany the final report. The package includes layer descriptions, layer grouping, and symbology. Layer groups include: new/revised datasets (paleo-geothermal features, geochemistry, geophysics, heat flow, slip and dilation, potential structures, geothermal power plants, positive and negative test sites), machine learning model input grids, machine learning models (Artificial Neural Network (ANN), Extreme Learning Machine (ELM), Bayesian Neural Network (BNN), Principal Component Analysis (PCA/PCAk), Non-negative Matrix Factorization (NMF/NMFk) - supervised and unsupervised), original NV Play Fairway data and models, and NV cultural/reference data.
See layer descriptions for additional metadata. Smaller GIS resource packages (by category) can be found in the related datasets section of this submission. A submission linking the full codebase for generating machine learning output models is available through the "Related Datasets" link on this page, and contains results beyond the top picks present in this compilation.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Contact CCWRA at wauth@chesco.org and the file will be sent via a Secure File Transfer online portal.Metadata files: The metadata for all datasets, except the Streams and Ponds, Lake and Streams (polygons) from 1993, are posted as .pdf files on the CCWRA web site in a .zip file. Link to download the metadata (3 mb).Layer symbology files: The current, recommended symbology for presenting the GIS data are also posted in a .zip file on the CCWRA web site. Link to download the layer symbology files (less than 1 mb).What is included in the map package:This map package, MS4_BaseGISData_11122016.mpk, includes much of the base map GIS data needed to assist municipalities with developing GIS data on their stormwater infrastructure. The map package includes the recommended symbology.Most of the data layers are set to be scale dependent so that they only 'turn on' when you zoom in to the municipal-level scale.The following layers are part of the map package:Municipal Boundaries2014 PADEP Integrated Water Quality Report (for Chester County)Chester County Road Centerlines Streams (line features) - via 1993 photo interpretationPonds, Lakes and Streams (polygon) - via 1993 photo interpretation2 Foot Contours - PAMAP Program 2006-20082010 Urbanized Areas, U.S. Census BureauImpervious surface from 2010DVRPC 2015 Land Use - Product 1 for Chester CountyWatersheds of Chester CountyThe map package was created on 11/21/2016 using ArcMap 10.3.Contact CCWRA at wauth@chesco.org with questions. We will try to respond the same day, but please understand that we may need a few days to respond.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This .zip file contains pre-configured files for members of the public to interact with Kendall County's public GIS layers in a desktop environment. Included are:An ArcGIS Pro PackageA QGIS Project FIleArcGIS Pro requires an ESRI license to use. See the ArcGIS Pro product page for more information.QGIS is free, open-source software that is available for a variety of computing environments. See the QGIS Downloads page to select the appropriate installation method.With the appropriate software installed, users can simply open the corresponding file. It may take a minute or two to load, due to the number of layers that need to load. Once loaded, users will have read-only access to all of the major public layers, and can adjust how they are displayed. In a desktop environment, users can also create and interact with other data sources, such as private site plans, annotations, and other public data layers from non-County entities.Please note that the layers included in these packages are the same live data sources found in the web maps. An internet connection is required for these files to function properly.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The GIS Analytics market is booming, projected to reach $2979.7 million by 2025, with a 5.6% CAGR. Discover key drivers, trends, and restraints shaping this dynamic industry, including cloud adoption, location intelligence, and AI integration. Leading companies and regional market analysis are included.
Facebook
Twitterhttps://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
According to our latest research, the Global GIS Bay Extension Package market size was valued at $1.25 billion in 2024 and is projected to reach $3.78 billion by 2033, expanding at a CAGR of 13.2% during 2024–2033. The primary growth driver for this market is the increasing integration of advanced geospatial analytics and real-time data processing capabilities within urban planning, utilities management, and environmental monitoring applications. As cities and enterprises worldwide continue to embrace digital transformation, the demand for sophisticated GIS solutions—particularly those that can seamlessly extend the functionality of existing GIS bays—is surging. These packages enable organizations to optimize spatial data management, enhance decision-making processes, and ensure operational efficiency across diverse sectors.
North America currently holds the largest share of the GIS Bay Extension Package market, accounting for approximately 38% of global revenue in 2024. This dominance is attributed to the region’s mature technological infrastructure, widespread adoption of GIS solutions across government and private sectors, and robust investments in smart city initiatives. The United States, in particular, is a frontrunner due to its proactive regulatory frameworks, strong focus on infrastructure modernization, and substantial funding for urban planning and disaster management projects. The presence of leading GIS technology providers and an ecosystem conducive to innovation further solidifies North America’s leadership in the market. Additionally, partnerships between public agencies and private enterprises are accelerating the deployment of advanced GIS bay extension packages, enabling more efficient data integration and spatial analysis.
In contrast, the Asia Pacific region is witnessing the fastest growth, with a projected CAGR of 16.4% from 2024 to 2033. This rapid expansion is fueled by significant investments in digital infrastructure, urbanization, and government-led smart city programs across countries such as China, India, Japan, and South Korea. The increasing need for effective urban planning, environmental monitoring, and transportation management solutions is driving the adoption of GIS bay extension packages. Furthermore, the region’s burgeoning population and the consequent demand for efficient utilities and resource management are compelling public and private sector organizations to invest in scalable and interoperable GIS solutions. Strategic collaborations between local governments and global technology vendors are also fostering innovation and accelerating market penetration in Asia Pacific.
Emerging economies in Latin America and the Middle East & Africa are gradually increasing their adoption of GIS bay extension packages, albeit at a slower pace due to budget constraints, limited technical expertise, and infrastructural challenges. However, localized demand for disaster management, agriculture optimization, and utilities management is generating new growth opportunities. Policy reforms aimed at digital transformation and the deployment of smart infrastructure are beginning to take shape, particularly in Brazil, the UAE, and South Africa. Nonetheless, these regions face challenges related to data standardization, integration with legacy systems, and the need for skilled personnel. Addressing these issues through capacity building and international partnerships will be crucial for unlocking the full potential of GIS bay extension packages in these markets.
| Attributes | Details |
| Report Title | GIS Bay Extension Package Market Research Report 2033 |
| By Component | Software, Services, Hardware |
| By Deployment Mode | On-Premises, Cloud-Based |
| By Application | Urban Planning, Envi |
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming GIS software market! Explore key trends, growth drivers, and regional analysis in our comprehensive market report. Learn about leading companies and the future of location intelligence. Projecting a $45B market by 2033!
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information Systems (GIS) Platform market is booming, projected to reach $4078.2 million in 2025 and experiencing significant growth through 2033. Explore market trends, key players (Esri, Hexagon, Pitney Bowes), and regional insights in this comprehensive analysis. Discover the impact of cloud-based GIS and spatial analytics on this dynamic sector.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
TwitterThese are the main layers that were used in the mapping and analysis for the Santa Monica Mountains Local Coastal Plan, which was adopted by the Board of Supervisors on August 26, 2014, and certified by the California Coastal Commission on October 10, 2014. Below are some links to important documents and web mapping applications, as well as a link to the actual GIS data:
Plan Website – This has links to the actual plan, maps, and a link to our online web mapping application known as SMMLCP-NET. Click here for website. Online Web Mapping Application – This is the online web mapping application that shows all the layers associated with the plan. These are the same layers that are available for download below. Click here for the web mapping application. GIS Layers – This is a link to the GIS layers in the form of an ArcGIS Map Package, click here (LINK TO FOLLOW SOON) for ArcGIS Map Package (version 10.3). Also, included are layers in shapefile format. Those are included below.
Below is a list of the GIS Layers provided (shapefile format):
Recreation (Zipped - 5 MB - click here)
Coastal Zone Campground Trails (2012 National Park Service) Backbone Trail Class III Bike Route – Existing Class III Bike Route – Proposed
Scenic Resources (Zipped - 3 MB - click here)
Significant Ridgeline State-Designated Scenic Highway State-Designated Scenic Highway 200-foot buffer Scenic Route Scenic Route 200-foot buffer Scenic Element
Biological Resources (Zipped - 45 MB - click here)
National Hydrography Dataset – Streams H2 Habitat (High Scrutiny) H1 Habitat H1 Habitat 100-foot buffer H1 Habitat Quiet Zone H2 Habitat H3 Habitat
Hazards (Zipped - 8 MB - click here)
FEMA Flood Zone (100-year flood plain) Liquefaction Zone (Earthquake-Induced Liquefaction Potential) Landslide Area (Earthquake-Induced Landslide Potential) Fire Hazard and Responsibility Area
Zoning and Land Use (Zipped - 13 MB - click here)
Malibu LCP – LUP (1986) Malibu LCP – Zoning (1986) Land Use Policy Zoning
Other Layers (Zipped - 38 MB - click here)
Coastal Commission Appeal Jurisdiction Community Names Santa Monica Mountains (SMM) Coastal Zone Boundary Pepperdine University Long Range Development Plan (LRDP) Rural Village
Contact the L.A. County Dept. of Regional Planning's GIS Section if you have questions. Send to our email.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The geographical mapping software market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors, including the rising adoption of cloud-based solutions for enhanced accessibility and collaboration, the growing need for precise location data in various applications, and the increasing integration of GIS technology with other analytical tools. Applications such as geological exploration, water conservancy projects, and urban planning are major contributors to market growth, benefiting from the ability to visualize and analyze spatial data efficiently. While the market faces certain restraints, such as the high initial investment costs associated with some software solutions and the need for specialized expertise, these are being mitigated by the emergence of more affordable and user-friendly options, as well as increased training and educational resources. The market is segmented by application (Geological Exploration, Water Conservancy Project, Urban Plan, Others) and type (Cloud Based, Web Based), with cloud-based solutions gaining significant traction due to their scalability and cost-effectiveness. Major players in the market, including Esri, Autodesk, Mapbox, and others, are continuously innovating and introducing new features to cater to the evolving needs of their customers. This competitive landscape ensures continuous improvement in software capabilities and affordability, further propelling market expansion. The geographical distribution of this market is broad, with North America and Europe currently holding significant market shares due to established infrastructure and high adoption rates. However, the Asia-Pacific region is exhibiting particularly rapid growth, driven by increasing urbanization, infrastructure development, and government initiatives promoting the use of GIS technologies. This regional shift indicates significant future growth potential in emerging markets. The forecast period of 2025-2033 suggests continued expansion, with a projected CAGR reflecting the sustained demand across different geographical regions and application areas. While precise figures are unavailable, based on industry trends and available data, a conservative estimate for the current market size would place it in the high hundreds of millions of dollars, with steady and significant growth anticipated.
Facebook
TwitterThis is a video demonstrating how to create an offline map in ArcGIS Pro. Steps:Start with creating a vector tile package (.vtpk) from vector data.Add the vector tile package on top of other relevant data in a basemap view. The other data can be a raster image or any of the Esri's default basemaps.Add the basemap into another map view. In this map, you can add other operational layers on top of the basemap.Create a mobile map package (.mmpk) from the multi-layered map.The mobile map package can then be shared through ArcGIS Enterprise portal or manually copied to mobile devices.Author: Irvan Salim - Solution Engineer from Esri IndonesiaCopyright © 2020 Esri Indonesia. All rights reserved.
Facebook
TwitterThe Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.
Facebook
Twitterhttps://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The booming Geospatial Solutions market is projected to reach $375.8 Billion by 2033, growing at a CAGR of 7.2%. This comprehensive analysis explores market drivers, trends, restraints, and key players across North America, Europe, and Asia Pacific. Discover insights into hardware, software, service segments and applications like utility, transportation, and defense.
Facebook
Twitterhttps://www.htfmarketinsights.com/privacy-policyhttps://www.htfmarketinsights.com/privacy-policy
Global GIS Software in Agriculture Market is segmented by Application (Land Management_ Crop Monitoring_ Soil Analysis_ Water Management_ Precision Farming), Type (Desktop GIS_ Web GIS_ Mobile GIS_ Cloud GIS), and Geography (North America_ LATAM_ West Europe_Central & Eastern Europe_ Northern Europe_ Southern Europe_ East Asia_ Southeast Asia_ South Asia_ Central Asia_ Oceania_ MEA)
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The GIS Software market is booming, projected to reach $45 billion by 2033 with a CAGR of 12%! Discover key trends, drivers, and restraints shaping this dynamic sector, including the impact of cloud computing, AI, and IoT. Leading companies and regional insights are analyzed in this comprehensive market report.