Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore the concepts, principles, and practices of acquiring, storing, analyzing, displaying, and using geospatial data. Additionally, you will investigate the science behind geographic information systems and the techniques and methods GIS scientists and professionals use to answer questions with a spatial component. In the lab section, you will become proficient with the ArcGIS Pro software package. This course will prepare you to take more advanced geospatial science courses. You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises, assignments, and less guided challenges. Please see the sequencing document for our suggestions as to the order in which to work through the material. To aid in working through the lecture modules, we have provided PDF versions of the lectures with the slide notes included. This course makes use of the ArcGIS Pro software package from the Environmental Systems Research Institute (ESRI), and directions for installing the software have also been provided. If you are not a West Virginia University student, you can still complete the labs, but you will need to obtain access to the software on your own.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The triad of host, agent, and environment has become a widely accepted framework for understanding infectious diseases and human health. While modern medicine has traditionally focused on the individual, there is a renewed interest in the role of the environment. Recent studies have shifted from an early-twentieth-century emphasis on individual factors to a broader consideration of contextual factors, including environmental, climatic, and social settings as spatial determinants of health. This shifted focus has been particularly relevant in the context of the COVID-19 pandemic, where the built environment in urban settings is increasingly recognized as a crucial factor influencing disease transmission. However, operationalizing the complexity of associations between the built environment and health for empirical analyses presents significant challenges. This study aims to identify key caveats in the operationalization of spatial determinants of health for empirical analysis and proposes guiding principles for future research. We focus on how the built environment in urban settings was studied in recent literature on COVID-19. Based on a set of criteria, we analyze 23 studies and identify explicit and implicit assumptions regarding the health-related dimensions of the built environment. Our findings highlight the complexities and potential pitfalls, referred to as the ‘spatial trap,' in the current approaches to spatial epidemiology concerning COVID-19. We conclude with recommendations and guiding questions for future studies to avoid falsely attributing a built environment impact on health outcomes and to clarify explicit and implicit assumptions regarding the health-related dimensions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Grid Garage Toolbox is designed to help you undertake the Geographic Information System (GIS) tasks required to process GIS data (geodata) into a standard, spatially aligned format. This format is required by most, grid or raster, spatial modelling tools such as the Multi-criteria Analysis Shell for Spatial Decision Support (MCAS-S). Grid Garage contains 36 tools designed to save you time by batch processing repetitive GIS tasks as well diagnosing problems with data and capturing a record of processing step and any errors encountered. Grid Garage provides tools that function using a list based approach to batch processing where both inputs and outputs are specified in tables to enable selective batch processing and detailed result reporting. In many cases the tools simply extend the functionality of standard ArcGIS tools, providing some or all of the inputs required by these tools via the input table to enable batch processing on a 'per item' basis. This approach differs slightly from normal batch processing in ArcGIS, instead of manually selecting single items or a folder on which to apply a tool or model you provide a table listing target datasets. In summary the Grid Garage allows you to: * List, describe and manage very large volumes of geodata. * Batch process repetitive GIS tasks such as managing (renaming, describing etc.) or processing (clipping, resampling, reprojecting etc.) many geodata inputs such as time-series geodata derived from satellite imagery or climate models. * Record any errors when batch processing and diagnose errors by interrogating the input geodata that failed. * Develop your own models in ArcGIS ModelBuilder that allow you to automate any GIS workflow utilising one or more of the Grid Garage tools that can process an unlimited number of inputs. * Automate the process of generating MCAS-S TIP metadata files for any number of input raster datasets. The Grid Garage is intended for use by anyone with an understanding of GIS principles and an intermediate to advanced level of GIS skills. Using the Grid Garage tools in ArcGIS ModelBuilder requires skills in the use of the ArcGIS ModelBuilder tool. Download Instructions: Create a new folder on your computer or network and then download and unzip the zip file from the GitHub Release page for each of the following items in the 'Data and Resources' section below. There is a folder in each zip file that contains all the files. See the Grid Garage User Guide for instructions on how to install and use the Grid Garage Toolbox with the sample data provided.
Facebook
TwitterThe primary intent of this workshop is to provide practical training in using Statistics Canada geography files with the leading industry standard software: Environmental Systems Research Institute, Inc.(ESRI) ArcGIS 9x. Participants will be introduced to the key features of ArcGIS 9x, as well as to geographic concepts and principles essential to understanding and working with geographic information systems (GIS) software. The workshop will review a range of geography and attribute files available from Statistics Canada, as well as some best practices for accessing this information. A brief overview of complementary data sets available from federal and provincial agencies will be provided. There will also be an opportunity to complete a practical exercise using ArcGIS9x. (Note: Data associated with this presentation is available on the DLI FTP site under folder 1873-221.)
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. For four of the map units – 3-SDF, 4-SDAF, 27-POHV, and 31-LBY – modeling using GIS principles was also employed. Modeling involves using environmental conditions of a map unit, such as elevation, slope, and aspect, which were determined by the field-collected ecological data. Data satisfying these conditions were obtained from ancillary data sources, such as USGS DEM data. These data were fed into a model that will result in locations (pixels) where all the desired conditions exist. For example, if a certain map unit was a shrubland that predominantly occurs above 8000 feet, on slopes of 3-10%, and on west-facing aspects, the correctly-constructed model will output only locations where this combination of conditions will be found. The resulting areas were then examined manually with the traditional photo interpretation process to confirm that they indeed could be accepted as that map unit. If photo interpretation determines that the areas were not acceptable, then they were changed to a more appropriate map unit.
Facebook
TwitterIn December 1997, the Indiana Association of Soil and Water Conservation Districts called a meeting of various county, state and federal agencies, as well as private companies known to have active GIS programs or interests. The goal of this meeting was to determine how funding could be generated to produce statewide digital orthophotography. The group that had assembled decided to continue meeting with a goal of implementing statewide GIS coordination. This effort became known as the Indiana Geographical Information Systems Initiative (INGISI). Thirty-nine government, academic and industry representatives signed the Indiana GIS Initiative Commitment to Success, formally endorsing the broad principles of INGISI. Since that time, Indiana moved from last in the nation to a leading state GIS exemplar. Initial funding was provided by grants from the Federal Geographic Data Committee and the Indiana Land Resources Council. Voluntary cooperation and partnership is a driving force behind successful community GIS initiatives, further garnering the required support to be sustainable. This Commitment to Success document proved to be impactful when speaking with senior executives.Today, Indiana has a thriving statewide geospatial program and ecosystem.Visit the IndianaMap.
Facebook
TwitterThe webinar "GIS for the Advancement of Child Welfare" describes Geographic Information Systems (GIS) and geospatial data and how they are used in child welfare. Our speaker, Kathryn Kulbicki, a consultant to the Children's Bureau's former National Resource Center for Child Welfare Data and Technology (NRC-CWDT), discusses geographic principles necessary for understanding geographic patterns and clusters. By understanding geography, we can better understand our communities and our families. Ms. Kulbicki also highlights child welfare GIS projects from several states that have been active in the NRC-CWDT's peer-to-peer group.
Joyce Rose, consultant to ICF International, moderates the webinar.
Metadata-only record linking to the original dataset. Open original dataset below.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japanese Knotweed s.l. taxa are amongst the most aggressive vascular plant Invasive Alien Species (IAS) in the world. These taxa form dense, suppressive monocultures and are persistent, pervasive invaders throughout the more economically developed countries (MEDCs) of the world. The current paper utilises the Object-Based Image Analysis (OBIA) approach of Definiens Imaging Developer software, in combination with very high spatial resolution (VHSR) colour infra-red (CIR) and visible-band (RGB) aerial photography in order to detect Japanese Knotweed s.l. taxa in Wales (UK). An algorithm was created using Definiens in order to detect these taxa, using variables found to effectively distinguish them from landscape and vegetation features. The results of the detection algorithm were accurate, as confirmed by field validation and desk-based studies. Further, these results may be incorporated into Geographical Information Systems (GIS) research as they are readily transferable as vector polygons (shapefiles). The successful detection results developed within the Definiens software should enable greater management and control efficacy. Further to this, the basic principles of the detection process could enable detection of these taxa worldwide, given the (relatively) limited technical requirements necessary to conduct further analyses.
Facebook
TwitterThis course teaches how to best symbolize your map data so that your audience gets the information that it needs.Goals Apply principles of map symbology to map features. Understand basic principles of map symbology.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The GIS-based Time model of Gothenburg aims to map the process of urban development in Gothenburg since 1960 and in particular to document the changes in the spatial form of the city - streets, buildings and plots - through time. Major steps have in recent decades been taken when it comes to understanding how cities work. Essential is the change from understanding cities as locations to understanding them as flows (Batty 2013)1. In principle this means that we need to understand locations (or places) as defined by flows (or different forms of traffic), rather than locations only served by flows. This implies that we need to understand the built form and spatial structure of cities as a system, that by shaping flows creates a series of places with very specific relations to all other places in the city, which also give them very specific performative potentials. It also implies the rather fascinating notion that what happens in one place is dependent on its relation to all other places (Hillier 1996)2. Hence, to understand the individual place, we need a model of the city as a whole.
Extensive research in this direction has taken place in recent years, that has also spilled over to urban design practice, not least in Sweden, where the idea that to understand the part you need to understand the whole is starting to be established. With the GIS-based Time model for Gothenburg that we present here, we address the next challenge. Place is not only something defined by its spatial relation to all other places in its system, but also by its history, or its evolution over time. Since the built form of the city changes over time, often by cities growing but at times also by cities shrinking, the spatial relation between places changes over time. If cities tend to grow, and most often by extending their periphery, it means that most places get a more central location over time. If this is a general tendency, it does not mean that all places increase their centrality to an equal degree. Depending on the structure of the individual city’s spatial form, different places become more centrally located to different degrees as well as their relative distance to other places changes to different degrees. The even more fascinating notion then becomes apparent; places move over time! To capture, study and understand this, we need a "time model".
The GIS-based time model of Gothenburg consists of: • 12 GIS-layers of the street network, from 1960 to 2015, in 5-year intervals • 12 GIS-layers of the buildings from 1960 to 2015, in 5-year intervals - Please note that this dataset has been moved to a separate catalog post (https://doi.org/10.5878/t8s9-6y15) and unpublished due to licensing restrictions on its source dataset. • 12 GIS- layers of the plots from1960 to 2015, in 5-year intervals
In the GIS-based Time model, for every time-frame, the combination of the three fundamental components of spatial form, that is streets, plots and buildings, provides a consistent description of the built environment at that particular time. The evolution of three components can be studied individually, where one could for example analyze the changing patterns of street centrality over time by focusing on the street network; or, the densification processes by focusing on the buildings; or, the expansion of the city by way of occupying more buildable land, by focusing on plots. The combined snapshots of street centrality, density and land division can provide insightful observations about the spatial form of the city at each time-frame; for example, the patterns of spatial segregation, the distribution of urban density or the patterns of sprawl. The observation of how the interrelated layers of spatial form together evolved and transformed through time can provide a more complete image of the patterns of urban growth in the city.
The Time model was created following the principles of the model of spatial form of the city, as developed by the Spatial Morphology Group (SMoG) at Chalmers University of Technology, within the three-year research project ‘International Spatial Morphology Lab (SMoL)’.
The project is funded by Älvstranden Utveckling AB in the framework of a larger cooperation project called Fusion Point Gothenburg. The data is shared via SND to create a research infrastructure that is open to new study initiatives.
12 GIS-layers of the street network in Gothenburg, from 1960 to 2015, in 5-year intervals. File format: shapefile (.shp), MapinfoTAB (.TAB). The coordinate system used is SWEREF 99TM, EPSG:3006.
12 GIS-layers of plots in Gothenburg, from 1960 to 2015, in 5-year intervals. Only built upon plots (plots with buildings) are included. File format: shapefile (.shp), MapinfoTAB (.TAB). The coordinate system used is SWEREF 99TM, EPSG:3006.
See the attached Technical Documentation for the description and further details on the production of the datasets. See the attached Report for the description of the related research project.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update information can be found within the layer’s attributes and in a table on the Utah Parcel Data webpage under LIR Parcels.In Spring of 2016, the Land Information Records work group, an informal committee organized by the Governor’s Office of Management and Budget’s State Planning Coordinator, produced recommendations for expanding the sharing of GIS-based parcel information. Participants in the LIR work group included representatives from county, regional, and state government, including the Utah Association of Counties (County Assessors and County Recorders), Wasatch Front Regional Council, Mountainland and Bear River AOGs, Utah League of Cities and Towns, UDOT, DNR, AGRC, the Division of Emergency Management, Blue Stakes, economic developers, and academic researchers. The LIR work group’s recommendations set the stage for voluntary sharing of additional objective/quantitative parcel GIS data, primarily around tax assessment-related information. Specifically the recommendations document establishes objectives, principles (including the role of local and state government), data content items, expected users, and a general process for data aggregation and publishing. An important realization made by the group was that ‘parcel data’ or ‘parcel record’ products have a different meaning to different users and data stewards. The LIR group focused, specifically, on defining a data sharing recommendation around a tax year parcel GIS data product, aligned with the finalization of the property tax roll by County Assessors on May 22nd of each year. The LIR recommendations do not impact the periodic sharing of basic parcel GIS data (boundary, ID, address) from the County Recorders to AGRC per 63F-1-506 (3.b.vi). Both the tax year parcel and the basic parcel GIS layers are designed for general purpose uses, and are not substitutes for researching and obtaining the most current, legal land records information on file in County records. This document, below, proposes a schedule, guidelines, and process for assembling county parcel and assessment data into an annual, statewide tax parcel GIS layer. gis.utah.gov/data/sgid-cadastre/ It is hoped that this new expanded parcel GIS layer will be put to immediate use supporting the best possible outcomes in public safety, economic development, transportation, planning, and the provision of public services. Another aim of the work group was to improve the usability of the data, through development of content guidelines and consistent metadata documentation, and the efficiency with which the data sharing is distributed.GIS Layer Boundary Geometry:GIS Format Data Files: Ideally, Tax Year Parcel data should be provided in a shapefile (please include the .shp, .shx, .dbf, .prj, and .xml component files) or file geodatabase format. An empty shapefile and file geodatabase schema are available for download at:At the request of a county, AGRC will provide technical assistance to counties to extract, transform, and load parcel and assessment information into the GIS layer format.Geographic Coverage: Tax year parcel polygons should cover the area of each county for which assessment information is created and digital parcels are available. Full coverage may not be available yet for each county. The county may provide parcels that have been adjusted to remove gaps and overlaps for administrative tax purposes or parcels that retain these expected discrepancies that take their source from the legally described boundary or the process of digital conversion. The diversity of topological approaches will be noted in the metadata.One Tax Parcel Record Per Unique Tax Notice: Some counties produce an annual tax year parcel GIS layer with one parcel polygon per tax notice. In some cases, adjacent parcel polygons that compose a single taxed property must be merged into a single polygon. This is the goal for the statewide layer but may not be possible in all counties. AGRC will provide technical support to counties, where needed, to merge GIS parcel boundaries into the best format to match with the annual assessment information.Standard Coordinate System: Parcels will be loaded into Utah’s statewide coordinate system, Universal Transverse Mercator coordinates (NAD83, Zone 12 North). However, boundaries stored in other industry standard coordinate systems will be accepted if they are both defined within the data file(s) and documented in the metadata (see below).Descriptive Attributes:Database Field/Column Definitions: The table below indicates the field names and definitions for attributes requested for each Tax Parcel Polygon record.FIELD NAME FIELD TYPE LENGTH DESCRIPTION EXAMPLE SHAPE (expected) Geometry n/a The boundary of an individual parcel or merged parcels that corresponds with a single county tax notice ex. polygon boundary in UTM NAD83 Zone 12 N or other industry standard coordinates including state plane systemsCOUNTY_NAME Text 20 - County name including spaces ex. BOX ELDERCOUNTY_ID (expected) Text 2 - County ID Number ex. Beaver = 1, Box Elder = 2, Cache = 3,..., Weber = 29ASSESSOR_SRC (expected) Text 100 - Website URL, will be to County Assessor in most all cases ex. webercounty.org/assessorBOUNDARY_SRC (expected) Text 100 - Website URL, will be to County Recorder in most all cases ex. webercounty.org/recorderDISCLAIMER (added by State) Text 50 - Disclaimer URL ex. gis.utah.gov...CURRENT_ASOF (expected) Date - Parcels current as of date ex. 01/01/2016PARCEL_ID (expected) Text 50 - County designated Unique ID number for individual parcels ex. 15034520070000PARCEL_ADD (expected, where available) Text 100 - Parcel’s street address location. Usually the address at recordation ex. 810 S 900 E #304 (example for a condo)TAXEXEMPT_TYPE (expected) Text 100 - Primary category of granted tax exemption ex. None, Religious, Government, Agriculture, Conservation Easement, Other Open Space, OtherTAX_DISTRICT (expected, where applicable) Text 10 - The coding the county uses to identify a unique combination of property tax levying entities ex. 17ATOTAL_MKT_VALUE (expected) Decimal - Total market value of parcel's land, structures, and other improvements as determined by the Assessor for the most current tax year ex. 332000LAND _MKT_VALUE (expected) Decimal - The market value of the parcel's land as determined by the Assessor for the most current tax year ex. 80600PARCEL_ACRES (expected) Decimal - Parcel size in acres ex. 20.360PROP_CLASS (expected) Text 100 - Residential, Commercial, Industrial, Mixed, Agricultural, Vacant, Open Space, Other ex. ResidentialPRIMARY_RES (expected) Text 1 - Is the property a primary residence(s): Y'(es), 'N'(o), or 'U'(nknown) ex. YHOUSING_CNT (expected, where applicable) Text 10 - Number of housing units, can be single number or range like '5-10' ex. 1SUBDIV_NAME (optional) Text 100 - Subdivision name if applicable ex. Highland Manor SubdivisionBLDG_SQFT (expected, where applicable) Integer - Square footage of primary bldg(s) ex. 2816BLDG_SQFT_INFO (expected, where applicable) Text 100 - Note for how building square footage is counted by the County ex. Only finished above and below grade areas are counted.FLOORS_CNT (expected, where applicable) Decimal - Number of floors as reported in county records ex. 2FLOORS_INFO (expected, where applicable) Text 100 - Note for how floors are counted by the County ex. Only above grade floors are countedBUILT_YR (expected, where applicable) Short - Estimated year of initial construction of primary buildings ex. 1968EFFBUILT_YR (optional, where applicable) Short - The 'effective' year built' of primary buildings that factors in updates after construction ex. 1980CONST_MATERIAL (optional, where applicable) Text 100 - Construction Material Types, Values for this field are expected to vary greatly by county ex. Wood Frame, Brick, etc Contact: Sean Fernandez, Cadastral Manager (email: sfernandez@utah.gov; office phone: 801-209-9359)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update information can be found within the layer’s attributes and in a table on the Utah Parcel Data webpage under LIR Parcels.In Spring of 2016, the Land Information Records work group, an informal committee organized by the Governor’s Office of Management and Budget’s State Planning Coordinator, produced recommendations for expanding the sharing of GIS-based parcel information. Participants in the LIR work group included representatives from county, regional, and state government, including the Utah Association of Counties (County Assessors and County Recorders), Wasatch Front Regional Council, Mountainland and Bear River AOGs, Utah League of Cities and Towns, UDOT, DNR, AGRC, the Division of Emergency Management, Blue Stakes, economic developers, and academic researchers. The LIR work group’s recommendations set the stage for voluntary sharing of additional objective/quantitative parcel GIS data, primarily around tax assessment-related information. Specifically the recommendations document establishes objectives, principles (including the role of local and state government), data content items, expected users, and a general process for data aggregation and publishing. An important realization made by the group was that ‘parcel data’ or ‘parcel record’ products have a different meaning to different users and data stewards. The LIR group focused, specifically, on defining a data sharing recommendation around a tax year parcel GIS data product, aligned with the finalization of the property tax roll by County Assessors on May 22nd of each year. The LIR recommendations do not impact the periodic sharing of basic parcel GIS data (boundary, ID, address) from the County Recorders to AGRC per 63F-1-506 (3.b.vi). Both the tax year parcel and the basic parcel GIS layers are designed for general purpose uses, and are not substitutes for researching and obtaining the most current, legal land records information on file in County records. This document, below, proposes a schedule, guidelines, and process for assembling county parcel and assessment data into an annual, statewide tax parcel GIS layer. gis.utah.gov/data/sgid-cadastre/It is hoped that this new expanded parcel GIS layer will be put to immediate use supporting the best possible outcomes in public safety, economic development, transportation, planning, and the provision of public services. Another aim of the work group was to improve the usability of the data, through development of content guidelines and consistent metadata documentation, and the efficiency with which the data sharing is distributed.GIS Layer Boundary Geometry:GIS Format Data Files: Ideally, Tax Year Parcel data should be provided in a shapefile (please include the .shp, .shx, .dbf, .prj, and .xml component files) or file geodatabase format. An empty shapefile and file geodatabase schema are available for download at:At the request of a county, AGRC will provide technical assistance to counties to extract, transform, and load parcel and assessment information into the GIS layer format.Geographic Coverage: Tax year parcel polygons should cover the area of each county for which assessment information is created and digital parcels are available. Full coverage may not be available yet for each county. The county may provide parcels that have been adjusted to remove gaps and overlaps for administrative tax purposes or parcels that retain these expected discrepancies that take their source from the legally described boundary or the process of digital conversion. The diversity of topological approaches will be noted in the metadata.One Tax Parcel Record Per Unique Tax Notice: Some counties produce an annual tax year parcel GIS layer with one parcel polygon per tax notice. In some cases, adjacent parcel polygons that compose a single taxed property must be merged into a single polygon. This is the goal for the statewide layer but may not be possible in all counties. AGRC will provide technical support to counties, where needed, to merge GIS parcel boundaries into the best format to match with the annual assessment information.Standard Coordinate System: Parcels will be loaded into Utah’s statewide coordinate system, Universal Transverse Mercator coordinates (NAD83, Zone 12 North). However, boundaries stored in other industry standard coordinate systems will be accepted if they are both defined within the data file(s) and documented in the metadata (see below).Descriptive Attributes:Database Field/Column Definitions: The table below indicates the field names and definitions for attributes requested for each Tax Parcel Polygon record.FIELD NAME FIELD TYPE LENGTH DESCRIPTION EXAMPLE SHAPE (expected) Geometry n/a The boundary of an individual parcel or merged parcels that corresponds with a single county tax notice ex. polygon boundary in UTM NAD83 Zone 12 N or other industry standard coordinates including state plane systemsCOUNTY_NAME Text 20 - County name including spaces ex. BOX ELDERCOUNTY_ID (expected) Text 2 - County ID Number ex. Beaver = 1, Box Elder = 2, Cache = 3,..., Weber = 29ASSESSOR_SRC (expected) Text 100 - Website URL, will be to County Assessor in most all cases ex. webercounty.org/assessorBOUNDARY_SRC (expected) Text 100 - Website URL, will be to County Recorder in most all cases ex. webercounty.org/recorderDISCLAIMER (added by State) Text 50 - Disclaimer URL ex. gis.utah.gov...CURRENT_ASOF (expected) Date - Parcels current as of date ex. 01/01/2016PARCEL_ID (expected) Text 50 - County designated Unique ID number for individual parcels ex. 15034520070000PARCEL_ADD (expected, where available) Text 100 - Parcel’s street address location. Usually the address at recordation ex. 810 S 900 E #304 (example for a condo)TAXEXEMPT_TYPE (expected) Text 100 - Primary category of granted tax exemption ex. None, Religious, Government, Agriculture, Conservation Easement, Other Open Space, OtherTAX_DISTRICT (expected, where applicable) Text 10 - The coding the county uses to identify a unique combination of property tax levying entities ex. 17ATOTAL_MKT_VALUE (expected) Decimal - Total market value of parcel's land, structures, and other improvements as determined by the Assessor for the most current tax year ex. 332000LAND _MKT_VALUE (expected) Decimal - The market value of the parcel's land as determined by the Assessor for the most current tax year ex. 80600PARCEL_ACRES (expected) Decimal - Parcel size in acres ex. 20.360PROP_CLASS (expected) Text 100 - Residential, Commercial, Industrial, Mixed, Agricultural, Vacant, Open Space, Other ex. ResidentialPRIMARY_RES (expected) Text 1 - Is the property a primary residence(s): Y'(es), 'N'(o), or 'U'(nknown) ex. YHOUSING_CNT (expected, where applicable) Text 10 - Number of housing units, can be single number or range like '5-10' ex. 1SUBDIV_NAME (optional) Text 100 - Subdivision name if applicable ex. Highland Manor SubdivisionBLDG_SQFT (expected, where applicable) Integer - Square footage of primary bldg(s) ex. 2816BLDG_SQFT_INFO (expected, where applicable) Text 100 - Note for how building square footage is counted by the County ex. Only finished above and below grade areas are counted.FLOORS_CNT (expected, where applicable) Decimal - Number of floors as reported in county records ex. 2FLOORS_INFO (expected, where applicable) Text 100 - Note for how floors are counted by the County ex. Only above grade floors are countedBUILT_YR (expected, where applicable) Short - Estimated year of initial construction of primary buildings ex. 1968EFFBUILT_YR (optional, where applicable) Short - The 'effective' year built' of primary buildings that factors in updates after construction ex. 1980CONST_MATERIAL (optional, where applicable) Text 100 - Construction Material Types, Values for this field are expected to vary greatly by county ex. Wood Frame, Brick, etc Contact: Sean Fernandez, Cadastral Manager (email: sfernandez@utah.gov; office phone: 801-209-9359)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Realistically modelling grasslands presents a persistent challenge because of their inherent structural complexity, extensive spatial coverage, and high component density. Previous research prioritized surface appearances through texture tilling, fundamentally neglecting the internal organizational principles that govern species compositions and component distributions. This work introduces a procedural framework for generating geographically plausible grassland scenes. We first integrate parametric scene modelling with visual perception theory to ensure visual realism and faithful reproductions of the observed colour distributions at the individual component level. Moreover, a deep neural network is developed to learn the underlying spatial distribution patterns of grassland components. This network enables the generation of new grassland imagery that preserves the learned statistical properties of colour and spatial attributes derived from reference samples. By coupling the framework with prepared 3D models, it can achieve a geographically consistent generation process across arbitrary spatial extents, effectively mitigating visual repetition and randomness. Validations demonstrate significant visual realism improvements across diverse grasslands. Our core findings establish that explicit modelling of component-level attributes and their spatial distribution patterns is essential for producing high-fidelity grassland scenes, providing novel insights for advancing toward the theory and practice of virtual geographical environments.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This GSS Geography Policy sets out the principles of those standards. The document provides best practice guidance on the geographic reference data to use, and how to use it so that official statistics are geographically comparable, consistent and fit for purpose. (File Size - 1 MB)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Gas Density Monitoring for GIS market size reached USD 620 million in 2024, reflecting robust adoption across critical power infrastructure and industrial applications. The market is projected to grow at a CAGR of 6.8% from 2025 to 2033, reaching a forecasted value of approximately USD 1,150 million by 2033. This growth is primarily driven by the rising demand for reliable and safe gas-insulated switchgear (GIS) operations, stringent environmental regulations, and the transition towards grid modernization initiatives worldwide.
The Gas Density Monitoring for GIS market is witnessing significant momentum due to the increasing need for system reliability and preventive maintenance in power transmission and distribution networks. As utilities and industries strive to minimize downtime and maximize operational safety, gas density monitoring solutions have become indispensable for detecting leaks and maintaining optimal performance in GIS installations. The proliferation of renewable energy sources and the expansion of smart grid infrastructure are further fueling the demand for advanced monitoring systems, ensuring seamless integration and efficient management of distributed energy resources. Moreover, the shift towards digital substations and the adoption of Industry 4.0 principles are compelling stakeholders to invest in intelligent gas density monitoring technologies, which offer real-time data analytics and remote diagnostics capabilities.
Another critical growth factor for the Gas Density Monitoring for GIS market is the tightening of environmental regulations concerning sulfur hexafluoride (SF6), a potent greenhouse gas commonly used in GIS. Regulatory bodies across North America, Europe, and Asia Pacific are mandating stricter emission controls and encouraging the adoption of alternative, eco-friendly gases. This regulatory pressure is prompting manufacturers and utilities to upgrade their monitoring systems to ensure compliance, minimize environmental impact, and avoid costly penalties. The ongoing research and development efforts to enhance the accuracy, reliability, and connectivity of gas density monitors are also contributing to market expansion, as end-users seek solutions that can address both operational and environmental challenges.
Furthermore, the growing emphasis on predictive maintenance and lifecycle management of GIS assets is accelerating the adoption of advanced gas density monitoring solutions. Utilities and industrial operators are increasingly leveraging digital monitoring platforms to optimize maintenance schedules, reduce operational costs, and extend the lifespan of their GIS equipment. The integration of IoT-enabled sensors and cloud-based analytics platforms is enabling real-time monitoring, early fault detection, and data-driven decision-making, which are essential for ensuring grid stability and resilience. As the global energy landscape evolves, the demand for innovative gas density monitoring technologies is expected to remain strong, supported by ongoing investments in grid modernization, urbanization, and industrial automation.
From a regional perspective, Asia Pacific continues to dominate the Gas Density Monitoring for GIS market, accounting for over 38% of global revenue in 2024, driven by extensive infrastructure development, rapid urbanization, and large-scale electrification projects in countries such as China, India, and Japan. North America and Europe follow closely, benefiting from mature power grids, stringent environmental regulations, and a strong focus on technological innovation. Meanwhile, emerging markets in Latin America and the Middle East & Africa are experiencing steady growth, fueled by grid expansion initiatives and increasing investments in energy infrastructure. The regional outlook remains positive, with all major markets expected to witness healthy growth rates over the forecast period.
The Product Type segment of the Gas Density Monitoring for GIS market is broadly categorized into Mechanical Gas Density Monitors, Electronic Gas Density Monitors, and Hybrid Gas Density Monitors. Mechanical gas density monitors, traditionally the mainstay in GIS applications, continue to hold a significant market share
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The integration of citizen science, volunteered geographic information (VGI), and Web/mobile geographic information systems (GIS) has demonstrated significant potential in enhancing disaster response efforts. However, delivering timely, comprehensive and trustworthy information remains a major challenge, particularly when relying on passive data collection from social media. While researchers have developed specialized platforms for natural hazards and advanced models for data analysis, few studies present a holistic lifecycle from stakeholder-oriented design through development, especially with attention to the design phase. To address this gap, this paper introduces an agile and iterative user-centered framework for designing and developing a participatory mobile GIS application for collecting reliable, first-hand observations. A pilot study conducted during real-world hurricane events demonstrated the application’s ability to operate both in real time and offline, enabling the collection of precise geotagged data, categorized labels, and diverse media formats. The results highlight the potential of this active, stakeholder-centered approach to support intelligent disaster response strategies and complement passive and authoritative data sources. This paper advances the integration of citizen science and mobile GIS by providing a framework that follows user-centered design principles to inform future disaster response applications.
Facebook
TwitterThe CT Geodata Portal is an open data site for all geospatial data in Connecticut. Users can find spatial datasets directly administered by the GIS Office as well as those shared by the Department of Transportation, the Department of Energy and Environmental Protection, CT ECO, and other partners.
Facebook
TwitterSummary: Creating the world’s first open-source, high-resolution, land cover map of the worldStorymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) K: Standard K-ESS3-1 - Earth and Human Activity - Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they liveGrade level(s) K: Standard K-ESS3-3 - Earth and Human Activity - Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environmentGrade level(s) 2: Standard 2-ESS2-1 - Earth’s Systems - Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the landGrade level(s) 2: Standard 2-ESS2-2 - Earth’s Systems - Develop a model to represent the shapes and kinds of land and bodies of water in an areaGrade level(s) 3: Standard 3-LS4-1 - Biological Evolution: Unity and Diversity - Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.Grade level(s) 3: Standard 3-LS4-1 - Biological Evolution: Unity and Diversity - Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.Grade level(s) 3: Standard 3-LS4-4 - Biological Evolution: Unity and Diversity - Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may changeGrade level(s) 4: Standard 4-ESS1-1 - Earth’s Place in the Universe - Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over timeGrade level(s) 4: Standard 4-ESS2-2 - Earth’s Systems - Analyze and interpret data from maps to describe patterns of Earth’s featuresGrade level(s) 5: Standard 5-ESS2-1 - Earth’s Systems - Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.Grade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 6-8: Standard MS-ESS2-6 - Earth’s Systems - Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.Grade level(s) 6-8: Standard MS-ESS3-3 - Earth and Human Activity - Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.Grade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Grade level(s) 9-12: Standard HS-ESS2-7 - Earth’s Systems - Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on EarthGrade level(s) 9-12: Standard HS-ESS3-4 - Earth and Human Activity - Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.Grade level(s) 9-12: Standard HS-ESS3-6 - Earth and Human Activity - Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activityMost frequently used words:areaslandclassesApproximate Flesch-Kincaid reading grade level: 9.7. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update information can be found within the layer’s attributes and in a table on the Utah Parcel Data webpageunder LIR Parcels.In Spring of 2016, the Land Information Records work group, an informal committee organized by the Governor’s Office of Management and Budget’s State Planning Coordinator, produced recommendations for expanding the sharing of GIS-based parcel information. Participants in the LIR work group included representatives from county, regional, and state government, including the Utah Association of Counties (County Assessors and County Recorders), Wasatch Front Regional Council, Mountainland and Bear River AOGs, Utah League of Cities and Towns, UDOT, DNR, AGRC, the Division of Emergency Management, Blue Stakes, economic developers, and academic researchers. The LIR work group’s recommendations set the stage for voluntary sharing of additional objective/quantitative parcel GIS data, primarily around tax assessment-related information. Specifically the recommendations document establishes objectives, principles (including the role of local and state government), data content items, expected users, and a general process for data aggregation and publishing. An important realization made by the group was that ‘parcel data’ or ‘parcel record’ products have a different meaning to different users and data stewards. The LIR group focused, specifically, on defining a data sharing recommendation around a tax year parcel GIS data product, aligned with the finalization of the property tax roll by County Assessors on May 22nd of each year. The LIR recommendations do not impact the periodic sharing of basic parcel GIS data (boundary, ID, address) from the County Recorders to AGRC per 63F-1-506 (3.b.vi). Both the tax year parcel and the basic parcel GIS layers are designed for general purpose uses, and are not substitutes for researching and obtaining the most current, legal land records information on file in County records. This document, below, proposes a schedule, guidelines, and process for assembling county parcel and assessment data into an annual, statewide tax parcel GIS layer. gis.utah.gov/data/sgid-cadastre/ It is hoped that this new expanded parcel GIS layer will be put to immediate use supporting the best possible outcomes in public safety, economic development, transportation, planning, and the provision of public services. Another aim of the work group was to improve the usability of the data, through development of content guidelines and consistent metadata documentation, and the efficiency with which the data sharing is distributed.GIS Layer Boundary Geometry:GIS Format Data Files: Ideally, Tax Year Parcel data should be provided in a shapefile (please include the .shp, .shx, .dbf, .prj, and .xml component files) or file geodatabase format. An empty shapefile and file geodatabase schema are available for download at:At the request of a county, AGRC will provide technical assistance to counties to extract, transform, and load parcel and assessment information into the GIS layer format.Geographic Coverage: Tax year parcel polygons should cover the area of each county for which assessment information is created and digital parcels are available. Full coverage may not be available yet for each county. The county may provide parcels that have been adjusted to remove gaps and overlaps for administrative tax purposes or parcels that retain these expected discrepancies that take their source from the legally described boundary or the process of digital conversion. The diversity of topological approaches will be noted in the metadata.One Tax Parcel Record Per Unique Tax Notice: Some counties produce an annual tax year parcel GIS layer with one parcel polygon per tax notice. In some cases, adjacent parcel polygons that compose a single taxed property must be merged into a single polygon. This is the goal for the statewide layer but may not be possible in all counties. AGRC will provide technical support to counties, where needed, to merge GIS parcel boundaries into the best format to match with the annual assessment information.Standard Coordinate System: Parcels will be loaded into Utah’s statewide coordinate system, Universal Transverse Mercator coordinates (NAD83, Zone 12 North). However, boundaries stored in other industry standard coordinate systems will be accepted if they are both defined within the data file(s) and documented in the metadata (see below).Descriptive Attributes:Database Field/Column Definitions: The table below indicates the field names and definitions for attributes requested for each Tax Parcel Polygon record.FIELD NAME FIELD TYPE LENGTH DESCRIPTION EXAMPLE SHAPE (expected) Geometry n/a The boundary of an individual parcel or merged parcels that corresponds with a single county tax notice ex. polygon boundary in UTM NAD83 Zone 12 N or other industry standard coordinates including state plane systemsCOUNTY_NAME Text 20 - County name including spaces ex. BOX ELDERCOUNTY_ID (expected) Text 2 - County ID Number ex. Beaver = 1, Box Elder = 2, Cache = 3,..., Weber = 29ASSESSOR_SRC (expected) Text 100 - Website URL, will be to County Assessor in most all cases ex. webercounty.org/assessorBOUNDARY_SRC (expected) Text 100 - Website URL, will be to County Recorder in most all cases ex. webercounty.org/recorderDISCLAIMER (added by State) Text 50 - Disclaimer URL ex. gis.utah.gov...CURRENT_ASOF (expected) Date - Parcels current as of date ex. 01/01/2016PARCEL_ID (expected) Text 50 - County designated Unique ID number for individual parcels ex. 15034520070000PARCEL_ADD (expected, where available) Text 100 - Parcel’s street address location. Usually the address at recordation ex. 810 S 900 E #304 (example for a condo)TAXEXEMPT_TYPE (expected) Text 100 - Primary category of granted tax exemption ex. None, Religious, Government, Agriculture, Conservation Easement, Other Open Space, OtherSalt Lake County Tax Exempt codes below:AE - Airport - ExemptCC - Commercial Common AreaCE - Conservation EasementCM - CemeteryEC - Exempt CharitableEE - Exempt EducationER - Exempt ReligiousGB - GreenbeltHE - Homeowners Assoc ExemptIL - In LieuIR - Irrigation CompanyMC - Master CardOE - Owner ExemptPE - Part ExemptPR - Pro-RatedPT - Privilege TaxPY - Privilege Tax on a YieldSA - State AssessedSC - State and Cnty AssessedSE - Special - ExemptSU - Salt Lake - Utah CntyTD - Divided Tax DistrictUI - Undivided_Interest TAX_DISTRICT (expected, where applicable) Text 10 - The coding the county uses to identify a unique combination of property tax levying entities ex. 17ATOTAL_MKT_VALUE (expected) Decimal - Total market value of parcel's land, structures, and other improvements as determined by the Assessor for the most current tax year ex. 332000LAND _MKT_VALUE (expected) Decimal - The market value of the parcel's land as determined by the Assessor for the most current tax year ex. 80600PARCEL_ACRES (expected) Decimal - Parcel size in acres ex. 20.360PROP_CLASS (expected) Text 100 - Residential, Commercial, Industrial, Mixed, Agricultural, Vacant, Open Space, Other ex. ResidentialSalt Lake County Property Class codes below:R - Residential / CondoC - CommercialI - IndustrialRE - RecreationalA - AgriculturalMH - Multi HousingMore information about the PROP_CLASS and PROP_TYPE for Salt Lake County can be found at http://slco.org/assessor/new/queryproptyp.cfmPROP_TYPE (expected) Text 100 - Single Family Res.,Townhome, CondoPRIMARY_RES (expected) Text 1 - Is the property a primary residence(s): Y'(es), 'N'(o), or 'U'(nknown) ex. YHOUSING_CNT (expected, where applicable) Text 10 - Number of housing units, can be single number or range like '5-10' ex. 1SUBDIV_NAME (optional) Text 100 - Subdivision name if applicable ex. Highland Manor SubdivisionBLDG_SQFT (expected, where applicable) Integer - Square footage of primary bldg(s) ex. 2816BLDG_SQFT_INFO (expected, where applicable) Text 100 - Note for how building square footage is counted by the County ex. Only finished above and below grade areas are counted.FLOORS_CNT (expected, where applicable) Decimal - Number of floors as reported in county records ex. 2FLOORS_INFO (expected, where applicable) Text 100 - Note for how floors are counted by the County ex. Only above grade floors are countedBUILT_YR (expected, where applicable) Short - Estimated year of initial construction of primary buildings ex. 1968EFFBUILT_YR (optional, where applicable) Short - The 'effective' year built' of primary buildings that factors in updates after construction ex. 1980CONST_MATERIAL (optional, where applicable) Text 100 - Construction Material Types, Values for this field are expected to vary greatly by county ex. Wood Frame, Brick, etc Contact: Sean Fernandez, Cadastral Manager (email: sfernandez@utah.gov; office phone: 801-209-9359)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore the concepts, principles, and practices of acquiring, storing, analyzing, displaying, and using geospatial data. Additionally, you will investigate the science behind geographic information systems and the techniques and methods GIS scientists and professionals use to answer questions with a spatial component. In the lab section, you will become proficient with the ArcGIS Pro software package. This course will prepare you to take more advanced geospatial science courses. You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises, assignments, and less guided challenges. Please see the sequencing document for our suggestions as to the order in which to work through the material. To aid in working through the lecture modules, we have provided PDF versions of the lectures with the slide notes included. This course makes use of the ArcGIS Pro software package from the Environmental Systems Research Institute (ESRI), and directions for installing the software have also been provided. If you are not a West Virginia University student, you can still complete the labs, but you will need to obtain access to the software on your own.