Enroll in this plan to get familiar with the user interface, apply commonly used tools, and master the basics of mapping and analyzing data using ArcGIS Pro.Goals Install ArcGIS Pro and efficiently locate tools, options, and user interface elements. Add data to a map, symbolize map features to represent type, categories, or quantities; and optimize map display at various scales. Create a file geodatabase to organize and accurately maintain GIS data over time. Complete common mapping, editing, and analysis workflows.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Video based training seminar.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.
Professional Growth Management - Attract, grow, and retain top talent to serve our seniors and their families with passion, pride, and professionalism.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
scripts.zip
arcgisTools.atbx: terrainDerivatives: make terrain derivatives from digital terrain model (Band 1 = TPI (50 m radius circle), Band 2 = square root of slope, Band 3 = TPI (annulus), Band 4 = hillshade, Band 5 = multidirectional hillshades, Band 6 = slopeshade). rasterizeFeatures: convert vector polygons to raster masks (1 = feature, 0 = background).
makeChips.R: R function to break terrain derivatives and chips into image chips of a defined size. makeTerrainDerivatives.R: R function to generated 6-band terrain derivatives from digital terrain data (same as ArcGIS Pro tool). merge_logs.R: R script to merge training logs into a single file. predictToExtents.ipynb: Python notebook to use trained model to predict to new data. trainExperiments.ipynb: Python notebook used to train semantic segmentation models using PyTorch and the Segmentation Models package. assessmentExperiments.ipynb: Python code to generate assessment metrics using PyTorch and the torchmetrics library. graphs_results.R: R code to make graphs with ggplot2 to summarize results. makeChipsList.R: R code to generate lists of chips in a directory. makeMasks.R: R function to make raster masks from vector data (same as rasterizeFeatures ArcGIS Pro tool).
terraceDL.zip
dems: LiDAR DTM data partitioned into training, testing, and validation datasets based on HUC8 watershed boundaries. Original DTM data were provided by the Iowa BMP mapping project: https://www.gis.iastate.edu/BMPs. extents: extents of the training, testing, and validation areas as defined by HUC 8 watershed boundaries. vectors: vector features representing agricultural terraces and partitioned into separate training, testing, and validation datasets. Original digitized features were provided by the Iowa BMP Mapping Project: https://www.gis.iastate.edu/BMPs.
Learn, Reconnect, and Discover the latest advances in Geographic Information Systems (GIS) technology when the New Zealand Esri User Conference returns in-person. Join hundreds of users from around the New Zealand and the South Pacific to discover how they’re leveraging GIS capabilities to solve problems, create shared understanding, and map common ground.This year's 3-day event includes not-to-be-missed opportunities for training, networking and sharing your own stories and experiences.A 2-day option is available for those short on time, while a 4-day option includes discounted instructor-led training for migrating to ArcGIS Pro.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tutorial Audience: GIS / Technology SpecialistsEnd User Audience: Emergency Management Planning and Operations StaffProblem: Your County Emergency Management Agency is planning a training exercise and wants to make use of “Web GIS.” Typically, they have you print out a new wall map each operational period and the status of facilities (e.g. shelters) are maintained in spreadsheets. This time they want to coordinate planning and operations across multiple locations, with everyone having the most up to date information on a live map. For example, they want to be able update the status of evacuation zones and shelters without requiring GIS expertise. Can you provide them with a web app that gives them some simple tools and just the layers they need to get started? Use a simulated flood or any other incident type to guide you through this process.Solution: Operations Response AppRequirements: You will need a license for ArcGIS Pro and ArcGIS Online to complete this tutorial.Note: This application is used with the Public Information Application Tutorial.
Coconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.
To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.
In this lesson you will build skills in these areas:
Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This New Zealand Point Cloud Classification Deep Learning Package will classify point clouds into building and background classes. This model is optimized to work with New Zealand aerial LiDAR data.The classification of point cloud datasets to identify Building is useful in applications such as high-quality 3D basemap creation, urban planning, and planning climate change response.Building could have a complex irregular geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.This model is designed to extract Building in both urban and rural area in New Zealand.The Training/Testing/Validation dataset are taken within New Zealand resulting of a high reliability to recognize the pattern of NZ common building architecture.Licensing requirementsArcGIS Desktop - ArcGIS 3D Analyst extension for ArcGIS ProUsing the modelThe model can be used in ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.The model is trained with classified LiDAR that follows the The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 6 BuildingApplicable geographiesThe model is expected to work well in the New Zealand. It's seen to produce favorable results as shown in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Training dataset - Auckland, Christchurch, Kapiti, Wellington Testing dataset - Auckland, WellingtonValidation/Evaluation dataset - Hutt City Dataset City Training Auckland, Christchurch, Kapiti, Wellington Testing Auckland, Wellington Validating HuttModel architectureThis model uses the SemanticQueryNetwork model architecture implemented in ArcGIS Pro.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Never Classified 0.984921 0.975853 0.979762 Building 0.951285 0.967563 0.9584Training dataThis model is trained on classified dataset originally provided by Open TopoGraphy with < 1% of manual labelling and correction.Train-Test split percentage {Train: 75~%, Test: 25~%} Chosen this ratio based on the analysis from previous epoch statistics which appears to have a descent improvementThe training data used has the following characteristics: X, Y, and Z linear unitMeter Z range-137.74 m to 410.50 m Number of Returns1 to 5 Intensity16 to 65520 Point spacing0.2 ± 0.1 Scan angle-17 to +17 Maximum points per block8192 Block Size50 Meters Class structure[0, 6]Sample resultsModel to classify a dataset with 23pts/m density Wellington city dataset. The model's performance are directly proportional to the dataset point density and noise exlcuded point clouds.To learn how to use this model, see this story
This data is a graphic representation of natural gas pipelines. The file has not been certified by a Professional Surveyor. This data is not suitable for legal purposes. The purpose of this data is to provide a generalized statewide view of natural gas pipelines.
The U.S. natural gas pipeline network is a highly integrated network that moves natural gas throughout the continental United States. The pipeline network has about 3 million miles of mainline and other pipelines that link natural gas production areas and storage facilities with consumers. In 2017, this natural gas transportation network delivered about 25 trillion cubic feet (Tcf) of natural gas to 75 million customers.
About half of the existing mainline natural gas transmission network and a large portion of the local distribution network were installed in the 1950s and 1960s because consumer demand for natural gas more than doubled following World War II. The distribution network has continued to expand to provide natural gas service to new commercial facilities and housing developments.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Please note that this dataset is not an official City of Toronto land use dataset. It was created for personal and academic use using City of Toronto Land Use Maps (2019) found on the City of Toronto Official Plan website at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/official-plan-maps-copy, along with the City of Toronto parcel fabric (Property Boundaries) found at https://open.toronto.ca/dataset/property-boundaries/ and Statistics Canada Census Dissemination Blocks level boundary files (2016). The property boundaries used were dated November 11, 2021. Further detail about the City of Toronto's Official Plan, consolidation of the information presented in its online form, and considerations for its interpretation can be found at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/ Data Creation Documentation and Procedures Software Used The spatial vector data were created using ArcGIS Pro 2.9.0 in December 2021. PDF File Conversions Using Adobe Acrobat Pro DC software, the following downloaded PDF map images were converted to TIF format. 9028-cp-official-plan-Map-14_LandUse_AODA.pdf 9042-cp-official-plan-Map-22_LandUse_AODA.pdf 9070-cp-official-plan-Map-20_LandUse_AODA.pdf 908a-cp-official-plan-Map-13_LandUse_AODA.pdf 978e-cp-official-plan-Map-17_LandUse_AODA.pdf 97cc-cp-official-plan-Map-15_LandUse_AODA.pdf 97d4-cp-official-plan-Map-23_LandUse_AODA.pdf 97f2-cp-official-plan-Map-19_LandUse_AODA.pdf 97fe-cp-official-plan-Map-18_LandUse_AODA.pdf 9811-cp-official-plan-Map-16_LandUse_AODA.pdf 982d-cp-official-plan-Map-21_LandUse_AODA.pdf Georeferencing and Reprojecting Data Files The original projection of the PDF maps is unknown but were most likely published using MTM Zone 10 EPSG 2019 as per many of the City of Toronto's many datasets. They could also have possibly been published in UTM Zone 17 EPSG 26917 The TIF images were georeferenced in ArcGIS Pro using this projection with very good results. The images were matched against the City of Toronto's Centreline dataset found here The resulting TIF files and their supporting spatial files include: TOLandUseMap13.tfwx TOLandUseMap13.tif TOLandUseMap13.tif.aux.xml TOLandUseMap13.tif.ovr TOLandUseMap14.tfwx TOLandUseMap14.tif TOLandUseMap14.tif.aux.xml TOLandUseMap14.tif.ovr TOLandUseMap15.tfwx TOLandUseMap15.tif TOLandUseMap15.tif.aux.xml TOLandUseMap15.tif.ovr TOLandUseMap16.tfwx TOLandUseMap16.tif TOLandUseMap16.tif.aux.xml TOLandUseMap16.tif.ovr TOLandUseMap17.tfwx TOLandUseMap17.tif TOLandUseMap17.tif.aux.xml TOLandUseMap17.tif.ovr TOLandUseMap18.tfwx TOLandUseMap18.tif TOLandUseMap18.tif.aux.xml TOLandUseMap18.tif.ovr TOLandUseMap19.tif TOLandUseMap19.tif.aux.xml TOLandUseMap19.tif.ovr TOLandUseMap20.tfwx TOLandUseMap20.tif TOLandUseMap20.tif.aux.xml TOLandUseMap20.tif.ovr TOLandUseMap21.tfwx TOLandUseMap21.tif TOLandUseMap21.tif.aux.xml TOLandUseMap21.tif.ovr TOLandUseMap22.tfwx TOLandUseMap22.tif TOLandUseMap22.tif.aux.xml TOLandUseMap22.tif.ovr TOLandUseMap23.tfwx TOLandUseMap23.tif TOLandUseMap23.tif.aux.xml TOLandUseMap23.tif.ov Ground control points were saved for all georeferenced images. The files are the following: map13.txt map14.txt map15.txt map16.txt map17.txt map18.txt map19.txt map21.txt map22.txt map23.txt The City of Toronto's Property Boundaries shapefile, "property_bnds_gcc_wgs84.zip" were unzipped and also reprojected to EPSG 26917 (UTM Zone 17) into a new shapefile, "Property_Boundaries_UTM.shp" Mosaicing Images Once georeferenced, all images were then mosaiced into one image file, "LandUseMosaic20211220v01", within the project-generated Geodatabase, "Landuse.gdb" and exported TIF, "LandUseMosaic20211220.tif" Reclassifying Images Because the original images were of low quality and the conversion to TIF made the image colours even more inconsistent, a method was required to reclassify the images so that different land use classes could be identified. Using Deep learning Objects, the images were re-classified into useful consistent colours. Deep Learning Objects and Training The resulting mosaic was then prepared for reclassification using the Label Objects for Deep Learning tool in ArcGIS Pro. A training sample, "LandUseTrainingSamples20211220", was created in the geodatabase for all land use types as follows: Neighbourhoods Insitutional Natural Areas Core Employment Areas Mixed Use Areas Apartment Neighbourhoods Parks Roads Utility Corridors Other Open Spaces General Employment Areas Regeneration Areas Lettering (not a land use type, but an image colour (black), used to label streets). By identifying the letters, it then made the reclassification and vectorization results easier to clean up of unnecessary clutter caused by the labels of streets. Reclassification Once the training samples were created and saved, the raster was then reclassified using the Image Classification Wizard tool in ArcGIS Pro, using the Support...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project: Recovery and Resilience of Oyster Reefs in the Big Bend of Florida
https://wec.ifas.ufl.edu/oysterproject/
Lone Cabbage Reef Restoration Spatial Data (2017-2023) Repository:
https://zenodo.org/communities/lonecabbagereef
Contact: Joe Aufmuth, University of Florida, George A. Smathers Libraries, Academic Research and Consulting Services Department, mapper@ufl.edu, (352) 273-0371.
Clarifying Publication: Aufmuth, Moore, Pine, and Ennis (2024 in progress), An Oyster’s Pearl: Restoring the Elevation of Lone Cabbage Reef, Florida.
The repository contains ArcGIS Map Packages (v3.2.0) that are listed in the repository file Descriptions_Lone_Cabbage_Reef_map_package_list_xls.
Purpose: Data collected varies in scale as well as positional and attribute accuracy. It is the responsibility of the user to verify that the data are appropriate for their project. No warranties or guarantees are made that the data are appropriate for uses other than the Recovery and Resilience of Oyster Reefs in the Big Bend of Florida project.
Data Collection: Elevation data was collected through professional certified surveyors (Lone Cabbage Reef 2017, 2018, and 2021) as well as through field data collection efforts using Trimble survey grade GPS equipment (University of Florida 2019). Oyster count data locations were collected through field efforts and mapped to field transects using Juniper GPS survey equipment (2018, 2019, 2020, 2021, 2022, 2023). Other spatial data layers included in this data set are credited in the layouts that produce the individual maps in the map packages.
Pharmacies in the United States and Territories A pharmacy is a facility whose primary function is to store, prepare and legally dispense prescription drugs under the professional supervision of a licensed pharmacist. It meets any licensing or certification standards set forth by the jurisdiction where it is located. This geospatial dataset includes pharmacies in the United States, as well as the territories of American Samoa, Guam, Puerto Rico, the Commonwealth of the Northern Mariana Islands, and the Virgin Islands. The tabular data was gathered from the National Plan and Provider Enumeration System (NPPES) dataset. Pharmacies that were verified to service only animal populations were excluded from the dataset. The currentness of this dataset is indicated by the [CONTDATE] field. Based on this field the oldest record dates from 03/30/2010 and the newest record dates from 10/25/2010.
There are many things to love about ArcGIS Pro, and this seminar will help you be productive right away. You will learn essential ArcGIS Pro terminology and get familiar with the ribbon-based user interface. The presenters highlight key differences in mapping, editing, and geoprocessing workflows and demonstrate new and streamlined capabilities that will help you complete your GIS work more quickly and easily than ever before.
This seminar covers essential concepts to effectively manage your geospatial data using ArcGIS Pro. You will get familiar with the ArcGIS Pro editing environment, including the user interface and key options and settings that increase accuracy and efficiency while editing. The presenters highlight new capabilities in ArcGIS Pro that will streamline your editing workflows.
Professional Growth Management - To focus on employee development for best practices in procurement and supply chain management.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Your manager has just assigned you to help the Park Service select some new observation points within Dinosaur National Park. These new observation points should meet a set of criteria based on their location. Twenty potential observation points have been identified. So, what is your next step? How can you use ArcGIS Pro to accomplish the analysis efficiently and accurately?After completing this course, you will be able to perform the following tasks:Use the appropriate geoprocessing tool for a given spatial problem.Demonstrate multiple methods for accessing geoprocessing tools.Use ArcGIS Pro to set geoprocessing environments.
ArcGIS Pro allows you to store multiple items, such as maps, layouts, tables, and charts, in a single project and work with them as needed. The application also responds contextually to your work. Tabs on the ribbon change depending on the type of item you're working with.In this tutorial, you'll explore the main components of the ArcGIS Pro user interface—the ribbon, views, and panes—and their interactions.
Tasks are preconfigured steps that guide users through specific workflows. Learn the basic principles and options to design tasks and share them throughout your organization.Goals Create stand-alone tasks and task groups. Share tasks to be reused in multiple ArcGIS Pro projects.
Enroll in this plan to get familiar with the user interface, apply commonly used tools, and master the basics of mapping and analyzing data using ArcGIS Pro.Goals Install ArcGIS Pro and efficiently locate tools, options, and user interface elements. Add data to a map, symbolize map features to represent type, categories, or quantities; and optimize map display at various scales. Create a file geodatabase to organize and accurately maintain GIS data over time. Complete common mapping, editing, and analysis workflows.