This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
GIS Market is Segmented by Component (Hardware and Software), by Function (Mapping, Surveying, Telematics and Navigation, Location-Based Services), by End User (Agriculture, Utilities, and Mining, Among Others), and by Geography (North America, Europe, Asia Pacific, and Rest of the World). The Report Offers Market Forecasts and Size in Value (USD) for all the Above Segments.
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) software market is projected to expand significantly, with a market size of XXX million in 2025 and a CAGR of XX% during the forecast period of 2025-2033. The growing adoption of GIS technology across various industries, including urban planning, environmental management, and transportation, is driving market growth. Additionally, the increasing availability of spatial data and the advancements in cloud computing and mobile GIS are further fueling market expansion. Key trends in the GIS software market include the rise of web-based GIS platforms, the integration of artificial intelligence (AI) and machine learning (ML) capabilities, and the growing popularity of open-source GIS solutions. North America and Europe are the major markets for GIS software, while the Asia Pacific region is expected to witness significant growth in the coming years. Major players in the GIS software market include Esri, Hexagon, Pitney Bowes, SuperMap, Bentley Systems, GE, GeoStar, and Zondy Cyber Group. These companies offer a wide range of GIS software products and services to meet the varying needs of different industries and organizations.
[Metadata] Description: TMK Parcels for the State of Hawaii - 2021; specific dates vary by county.Sources: County of Maui: 4/26/21; County of Kauai: 4/26/21, County of Hawaii: 4/22/21; City and County of Honolulu: 11/15/21.Hawaii Statewide GIS Program projected to a common projection/datum (UTM Zone 4, NAD 83 HARN) and merged all counties parcel data into one layer. Where necessary, the State standardized field names or added fields to the county layers such as creating text fields for corresponding numeric tmk fields, etc., and / or calculated values for fields such as links to qpublic9.qpublic.net websites showing additional information for each parcel.For more information, please refer to metadata at https://files.hawaii.gov/dbedt/op/gis/data/tmk_state.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website:https://planning.hawaii.gov/gis.
This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the 2020 Census place boundary file in a GIS system to produce maps for 40 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information System (GIS) software market is experiencing robust growth, driven by increasing adoption across various sectors like government, utilities, and transportation. The market, currently valued at approximately $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key trends, including the rising demand for location-based services, the proliferation of geospatial data, and the increasing use of cloud-based GIS solutions. The cloud-based segment is rapidly gaining traction due to its scalability, cost-effectiveness, and accessibility. Furthermore, the enterprise application segment dominates the market share, reflecting the widespread adoption of GIS for complex spatial analysis and decision-making in large organizations. While the market faces some restraints, such as the high initial investment costs for some advanced systems and the need for specialized expertise, the overall growth trajectory remains positive. The increasing integration of GIS with other technologies like AI and IoT further enhances its capabilities, opening new avenues for market expansion. Major players like Esri, Google, and Pitney Bowes are leading the market, constantly innovating and expanding their product offerings to meet evolving customer needs. The regional distribution of the market shows strong performance in North America and Europe, driven by advanced technological infrastructure and high adoption rates. However, the Asia-Pacific region is emerging as a significant growth area, propelled by rapid urbanization and infrastructure development. The competitive landscape is marked by both established players and emerging startups, fostering innovation and competition. The ongoing advancements in GIS technology, including improvements in data visualization, analytics, and mobile accessibility, are expected to further propel market growth in the coming years. The integration of GIS with other technologies will lead to new applications and expanded opportunities, ultimately driving the market towards sustained expansion throughout the forecast period.
The Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (macv_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (macv_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (macv_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (macv_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (macv_geology_metadata.txt or macv_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
GIS In Telecom Sector Market Size 2024-2028
The GIS in telecom sector market size is forecast to increase by USD 1.91 billion at a CAGR of 14.68% between 2023 and 2028.
Geographic Information Systems (GIS) have gained significant traction In the telecom sector due to the increasing adoption of advanced technologies such as big data, sensors, drones, and LiDAR. The use of GIS enables telecom companies to effectively manage and analyze large volumes of digital data, including satellite and GPS information, to optimize infrastructure monitoring and antenna placement. In the context of smart cities, GIS plays a crucial role in enabling efficient communication between developers and end-users by providing real-time data on construction progress and infrastructure status. Moreover, the integration of LiDAR technology with drones offers enhanced capabilities for surveying and mapping telecom infrastructure, leading to improved accuracy and efficiency.
However, the implementation of GIS In the telecom sector also presents challenges, including data security concerns and the need for servers and computers to handle the large volumes of data generated by these technologies. In summary, the telecom sector's growing reliance on digital technologies such as GIS, big data, sensors, drones, and LiDAR is driving market growth, while the need for effective data management and security solutions presents challenges that must be addressed.
What will be the Size of the GIS In Telecom Sector Market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market In the telecom sector is experiencing significant growth due to the increasing demand for electronic information and visual representation of data in various industries. This market encompasses a range of hardware and software solutions, including GNSS/GPS antennas, Lidar, GIS collectors, total stations, imaging sensors, and more. Major industries such as agriculture, oil & gas, architecture, and infrastructure monitoring are leveraging GIS technology for data analysis and decision-making. The adoption rate of GIS In the telecom sector is driven by the need for efficient data management and analysis, as well as the integration of real-time data from various sources.
Data formats and sources vary widely, from satellite and aerial imagery to ground-based sensors and IoT devices. The market is also witnessing innovation from startups and established players, leading to advancements in data processing capabilities and integration with other technologies like 5G networks and AI. Applications of GIS In the telecom sector include smart urban planning, smart utilities, and smart public works, among others.
How is this GIS In Telecom Sector Industry segmented and which is the largest segment?
The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Geography
APAC
China
North America
Canada
US
Europe
UK
Italy
South America
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. The telecom sector's Global GIS market encompasses software solutions for desktops, mobiles, cloud, and servers, along with developers' platforms. companies provide industry-specific GIS software, expanding the growth potential of this segment. Telecom companies heavily utilize intelligent maps generated by GIS for informed decisions on capacity planning and enhancements, such as improved service and next-generation networks. This drives significant growth In the software segment. Commercial entities offer open-source GIS software to counteract the threat of counterfeit products.
GIS technologies are integral to telecom network management, spatial data analysis, infrastructure planning, location-based services, network coverage mapping, data visualization, asset management, real-time network monitoring, design, wireless network mapping, integration, maintenance, optimization, and geospatial intelligence. Key applications include 5G network planning, network visualization, outage management, geolocation, mobile network optimization, and smart infrastructure planning. The GIS industry caters to major industries, including agriculture, oil & gas, architecture, engineering, construction, mining, utilities, retail, healthcare, government, and smart city planning. GIS solutions facilitate real-time data management, spatial information, and non-spatial information, offering enterprise solutions and transportation applications.
Get a glance at the market report of share of variou
The Digital Surficial Geologic-GIS Map of the Stroudsburg Quadrangle, New Jersey and Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (stro_surficial_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (stro_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (stro_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (dewa_surficial_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (dewa_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (stro_surficial_geology_metadata_faq.pdf). Please read the dewa_surficial_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (stro_surficial_geology_metadata.txt or stro_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The GIS software market in Agriculture in Latin America was estimated at around 130 million U.S. dollars in 2018, and was forecast to surpass 143 million dollars in 2019. In the latter year, Brazil was expected to account for nearly one third of this market, with a value of 47.8 million dollars. Meanwhile, Argentina's market was forecast at 33.3 million dollars in 2019.
The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Smart agriculture refers to tools that collect, store and analyze digital data along the agricultural value chain. Geographic Information System (GIS) system software is one of those tools used in the agricultural sector. The GIS System market in Spain had a value of over 36 million dollars in 2019.
[Metadata] Description: Land Study Bureau's Detailed Agricultural land productivity ratings for Kauai, Oahu, Maui, Molokai, Lanai and Hawaii. Source: Land Study Bureau's Detailed Land Classification, 1965-1972. Aerial Photos hand drafted onto paper overlays of the U.S.G.S., 1:24,000 topographic and orthophoto quads. Ratings were developed for both over-all productivity, and for specific crops. This layer represents only the over-all productivity ratings.May 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of the 2016 GIS database conversion and were no longer needed.For more information, please refer to metadata at https://files.hawaii.gov/dbedt/op/gis/data/lsb.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data provides a summary of the state of development practice for Geographic Information Systems (GIS) software (as of August 2017). The summary is based on grading a set of 30 GIS products using a template of 56 questions based on 13 software qualities. The products range in scope and purpose from a complete desktop GIS systems, to stand-alone tools, to programming libraries/packages.
The template used to grade the software is found in the TabularSummaries.zip file. Each quality is measured with a series of questions. For unambiguity the responses are quantified wherever possible (e.g.~yes/no answers). The goal is for measures that are visible, measurable and feasible in a short time with limited domain knowledge. Unlike a comprehensive software review, this template does not grade on functionality and features. Therefore, it is possible that a relatively featureless product can outscore a feature-rich product.
A virtual machine is used to provide an optimal testing environments for each software product. During the process of grading the 30 software products, it is much easier to create a new virtual machine to test the software on, rather than using the host operating system and file system.
The raw data obtained by measuring each software product is in SoftwareGrading-GIS.xlsx. Each line in this file corresponds to between 2 and 4 hours of measurement time by a software engineer. The results are summarized for each quality in the TabularSummaries.zip file, as a tex file and compiled pdf file.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global Geographic Information System Software Market was valued at USD 8.5 billion in 2022 and will reach USD 21.0 billion by 2030, registering a CAGR of 12.1% for the forecast period 2023-2030. Factor Impacting the Geographic Information System Software Market:
The development of smart cities and Modern urban Planning is expected to drive the Geographic Information System Software Market
The process of site selection, land acquisition, planning, designing, visualizing, building, project management, operations, and reporting are all aided by geographic information system (GIS) software for smart cities. Moreover, geographic information system (GIS) solutions are used in urban planning by experts to better properly analyze, model, and visualize places. By processing geospatial data from satellite imaging, aerial photography, and remote sensors, geographic information system (GIS) software systems offer a comprehensive perspective of the land and infrastructure. Additionally, the industry for geographic information system software is growing over the forecast period as a result of such geographic information system (GIS) software applications.
Restraining factor for Geographic Information System Software Market
The high cost of the system has impacted the Geographic Information System Software Market
The pricey geographic information system will further derail the overall market’s growth. The geographic information system (GIS) is expensive because, in addition to the technology and software, it is necessary to have a properly qualified human workforce. Moreover, Specialized knowledge is needed to comprehend and interpret the information gathered by a geographic information system (GIS) system, which is expensive to hire and train. This factor will therefore obstruct market growth over the forecast period. What is Geographic Information System Software?
Geographic Information System Software is used to develop, hold, retrieve, organize, display, and perform analyses on many kinds of spatial and geographic data. The geographic information system (GIS) Industry is majorly driven by infrastructural developments, such as smart cities, water and land management, utility, and urban planning. The services segment provides various applications such as location-based services and, thus, is one of the prominent contributors to the market share. Advancements in GIS technologies, such as geo-analytics and integrated location-based data services, are also boosting the adoption of GIS in various regional markets, thereby driving the market demand over the forecast period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.
GIS Market Size 2025-2029
The GIS market size is forecast to increase by USD 24.07 billion at a CAGR of 20.3% between 2024 and 2029.
The Global Geographic Information System (GIS) market is experiencing significant growth due to the integration of Building Information Modeling (BIM) software and GIS, enabling more accurate and efficient construction projects. The increasing adoption of GIS solutions in precision farming for soil and water management is another key trend, with farmers utilizing sensors, GPS, and satellite data to optimize fertilizer usage and crop yields. However, challenges persist, such as the lack of proper planning leading to implementation failures of GIS solutions. In the realm of smart cities, GIS plays a crucial role in managing data from various sources, including LIDAR, computer-aided design, and digital twin technologies. Additionally, public safety and insurance industries are leveraging GIS for server-based data analysis, while smartphones and antennas facilitate real-time data collection. Amidst this digital transformation, ensuring data security and privacy becomes paramount, making it a critical consideration for market participants.
What will be the Size of the GIS Market During the Forecast Period?
Request Free Sample
The Global Geographic Information System (GIS) market encompasses a range of software solutions and hardware components used to capture, manage, analyze, and visualize geospatial data. Key industries driving market growth include transportation, smart city planning, green buildings, architecture and construction, utilities, oil and gas, agriculture, and urbanization. GIS technology plays a pivotal role in various applications such as 4D GIS software for infrastructure project management, augmented reality platforms for enhanced visualization, and LIDAR and GNSS/GPS antenna for accurate location data collection. Cloud technology is transforming the GIS landscape by enabling real-time data access and collaboration. The transportation sector is leveraging GIS for route optimization, asset management, and predictive maintenance.
Urbanization and population growth are fueling the demand for GIS in city planning and disaster management. Additionally, GIS is increasingly being adopted in sectors like agriculture for precision farming and soil mapping, and in the construction industry for Building Information Modeling (BIM). The market is also witnessing the emergence of innovative applications in areas such as video games and natural disasters risk assessment. Mobile devices are further expanding the reach of GIS, making it accessible to a wider audience. Overall, the market is poised for significant growth, driven by the increasing need for data-driven decision-making and the integration of geospatial technology into various industries.
How is this GIS Industry segmented and which is the largest segment?
The gis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Type
Telematics and navigation
Mapping
Surveying
Location-based services
Device
Desktop
Mobile
Geography
North America
Canada
US
Europe
Germany
UK
France
APAC
China
Japan
South Korea
South America
Brazil
Middle East and Africa
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
The market encompasses desktop, mobile, cloud, and server software solutions, catering to various industries. Open-source software with limited features poses a challenge due to the prevalence of counterfeit products. Yet, the market witnesses an emerging trend toward cloud-based GIS software adoption. However, standardization and interoperability concerns hinder widespread adoption. Geospatial technology is utilized extensively in sectors such as Transportation, Utilities, Oil and Gas, Agriculture, and Urbanization, driven by population growth, urban planning, and sustainable development. Key applications include smart city planning, green buildings, BIM, 4D GIS software, augmented reality platforms, GIS collectors, LIDAR, and GNSS/GPS antennas. Cloud technology, mobile devices, and satellite imaging are critical enablers.
Get a glance at the GIS Industry report of share of various segments Request Free Sample
The software segment was valued at USD 5.06 billion in 2019 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 38% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during th
An ArcGIS Dashboard used by GIS Managers to show the alignment of GIS activities with organizational goals, GIS program goals and ArcGIS capabilities.
This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.