100+ datasets found
  1. Geospatial data for the Vegetation Mapping Inventory Project of Pictured...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pictured-rocks-national-la
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Pictured Rocks
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  2. e

    Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso...

    • envidat.ch
    • data.europa.eu
    json, not available +1
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ionuț Iosifescu Enescu (2025). Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso with Shaded Relief and Water) [Dataset]. http://doi.org/10.16904/envidat.68
    Explore at:
    not available, json, xmlAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Swiss Federal Institute for Forest, Snow and Landscape Research WSL
    Authors
    Ionuț Iosifescu Enescu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    WSL
    Description

    The attached data are some large GIS raster files (GeoTIFFs) made with Natural Earth data. Natural Earth is a free vector and raster map data @ naturalearthdata.com. The data used for creating these large files was the "Cross Blended Hypso with Shaded Relief and Water". Data was concatenated to achieve larger and larger files. Internal pyramids were created, in order that the files can be opened easily in a GIS software such as QGIS or by a (future) GIS data visualisation module integrated in EnviDat. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com

  3. D

    Lamto GIS layer (raster dataset): vegetation cover of the Lamto reserve...

    • dataverse.ird.fr
    png, tiff, zip
    Updated Mar 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; L. Gautier; L. Gautier; S. Konaté; S. Konaté (2023). Lamto GIS layer (raster dataset): vegetation cover of the Lamto reserve (Côte d'Ivoire) in 1988, after original map by Gautier (1990) [Dataset]. http://doi.org/10.23708/TCK6IH
    Explore at:
    png(4316507), png(1163194), tiff(174347896), zip(345365370)Available download formats
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    DataSuds
    Authors
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; L. Gautier; L. Gautier; S. Konaté; S. Konaté
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.23708/TCK6IHhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.23708/TCK6IH

    Area covered
    Côte d'Ivoire
    Description

    This dataset holds the map “Carte du recouvrement ligneux de la réserve de Lamto" published by Gautier, L. in 1990. We georeferenced the scanned paper map using ground control points derived from Google Maps. The dataset contains the scanned map, the ground control points and the raster layer of the georeferenced map.

  4. n

    Earth Cover Classification - National Petroleum Reserve Alaska - Report and...

    • catalog.northslopescience.org
    Updated Feb 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Earth Cover Classification - National Petroleum Reserve Alaska - Report and GIS Raster - Datasets - North Slope Science Catalog [Dataset]. https://catalog.northslopescience.org/dataset/1444
    Explore at:
    Dataset updated
    Feb 23, 2016
    Area covered
    Earth, Alaska North Slope
    Description

    Eight Landsat TM and three SPOT satellite scenes were used to determine earth cover categories for this 9,300,000 hectare (23,000,000 acre) study area. Seven major classes and seventeen minor classes were classified. Datafiles (GIS Raster) are provided separately for download.

  5. u

    GIS Clipping and Summarization Toolbox

    • data.nkn.uidaho.edu
    • verso.uidaho.edu
    Updated Dec 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justin L. Welty; Michelle I. Jeffries; Robert S. Arkle; David S. Pilliod; Susan K. Kemp (2021). GIS Clipping and Summarization Toolbox [Dataset]. http://doi.org/10.5066/P99X8558
    Explore at:
    zip compressed directory(688 kilobytes)Available download formats
    Dataset updated
    Dec 15, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Justin L. Welty; Michelle I. Jeffries; Robert S. Arkle; David S. Pilliod; Susan K. Kemp
    License

    https://creativecommons.org/licenses/publicdomain/https://creativecommons.org/licenses/publicdomain/

    https://spdx.org/licenses/CC-PDDChttps://spdx.org/licenses/CC-PDDC

    Description

    Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset

  6. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  7. a

    2018 Land Use / Land Cover

    • hub.arcgis.com
    • azgeo-open-data-agic.hub.arcgis.com
    • +1more
    Updated Feb 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pima County GIS (2021). 2018 Land Use / Land Cover [Dataset]. https://hub.arcgis.com/maps/91e6ef3ef013414798ea009d5093db6d
    Explore at:
    Dataset updated
    Feb 12, 2021
    Dataset authored and provided by
    Pima County GIS
    Area covered
    Description

    Zipped raster dataset of 2018 Land-Use-Land-Cover (named pima_landcover_noroads.zip)Download this zipped dataset here by clicking the download button at top right.https://gis.pima.gov/data/contents/metadet.cfm?name=lulc18

  8. d

    Land Cover Raster Data (2017) – 6in Resolution

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Land Cover Raster Data (2017) – 6in Resolution [Dataset]. https://catalog.data.gov/dataset/land-cover-raster-data-2017-6in-resolution
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    A 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks) For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub. To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md

  9. a

    Displaying Raster Data in ArcGIS

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Displaying Raster Data in ArcGIS [Dataset]. https://hub.arcgis.com/datasets/delaware::displaying-raster-data-in-arcgis
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    Learn to appropriately symbolize rasters based on their attributes and intended use, modify raster properties to support better visualization and interpretation, and apply out-of-the-box appearance functions to enhance the viewing experience.GoalsChoose appropriate tools to help with better visualization and interpretation of rasters and imagery.

  10. D

    Lamto GIS layer (raster dataset): Lamto reserve (Côte d'Ivoire) 1963...

    • dataverse.ird.fr
    Updated Mar 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; S. Konaté; de la Souchère P; Badarello L; S. Konaté; de la Souchère P; Badarello L (2024). Lamto GIS layer (raster dataset): Lamto reserve (Côte d'Ivoire) 1963 vegetation cover, after original map by de la Souchère & Badarello (1969) [Dataset]. http://doi.org/10.23708/XCNQCS
    Explore at:
    application/zipped-shapefile(113195307), png(84127), png(288848), tiff(55323016)Available download formats
    Dataset updated
    Mar 12, 2024
    Dataset provided by
    DataSuds
    Authors
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; S. Konaté; de la Souchère P; Badarello L; S. Konaté; de la Souchère P; Badarello L
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.23708/XCNQCShttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.23708/XCNQCS

    Area covered
    Côte d'Ivoire
    Description

    This dataset holds the unpublished map “Carte physionomique des faciès savaniens de Lamto" drawn by de la Souchère; P. and Badarello, L. in 1969. We georeferenced the scanned paper map using ground control points derived from Google Maps. The dataset contains the scanned map, the ground control points and the raster layer of the georeferenced map.

  11. Urban Green Raster Germany 2018

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Feb 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tobias Krüger; Tobias Krüger; Lisa Eichler; Lisa Eichler; Gotthard Meinel; Gotthard Meinel; Julia Tenikl; Hannes Taubenböck; Hannes Taubenböck; Michael Wurm; Michael Wurm; Julia Tenikl (2022). Urban Green Raster Germany 2018 [Dataset]. http://doi.org/10.26084/ioerfdz-r10-urbgrn2018
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 28, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tobias Krüger; Tobias Krüger; Lisa Eichler; Lisa Eichler; Gotthard Meinel; Gotthard Meinel; Julia Tenikl; Hannes Taubenböck; Hannes Taubenböck; Michael Wurm; Michael Wurm; Julia Tenikl
    Area covered
    Germany
    Description

    Abstract

    The Urban Green Raster Germany is a land cover classification for Germany that addresses in particular the urban vegetation areas. The raster dataset covers the terrestrial national territory of Germany and has a spatial resolution of 10 meters. The dataset is based on a fully automated classification of Sentinel-2 satellite data from a full 2018 vegetation period using reference data from the European LUCAS land use and land cover point dataset.
    The dataset identifies eight land cover classes. These include Built-up, Built-up with significant green share, Coniferous wood, Deciduous wood, Herbaceous vegetation (low perennial vegetation), Water, Open soil, Arable land (low seasonal vegetation).
    The land cover dataset provided here is offered as an integer raster in GeoTiff format. The assignment of the number coding to the corresponding land cover class is explained in the legend file.

    Data acquisition

    The data acquisition comprises two main processing steps: (1) Collection, processing, and automated classification of the multispectral Sentinel 2 satellite data with the “Land Cover DE method”, resulting in the raw land cover classification dataset, NDVI layer, and RF assignment frequency vector raster. (2) GIS-based postprocessing including discrimination of (densely) built-up and loosely built-up pixels according NDVI threshold, and creating water-body and arable-land masks from geo-topographical base-data (ATKIS Basic DLM) and reclassification of water and arable land pixels based on the assignment frequency.

    Data collection

    Satellite data were searched and downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).

    The LUCAS reference and validation points were loaded from the Eurostat platform (https://ec.europa.eu/eurostat/web/lucas/data/database).

    The processing of the satellite data was performed at the DLR data center in Oberpfaffenhofen.

    GIS-based post-processing of the automatic classification result was performed at IOER in Dresden.

    Value of the data

    The dataset can be used to quantify the amount of green areas within cities on a homogeneous data base [5].

    Thus it is possible to compare cities of different sizes regarding their greenery and with respect to their ratio of green and built-up areas [6].

    Built-up areas within cities can be discriminated regarding their built-up density (dense built-up vs. built-up with higher green share).

    Data description

    A Raster dataset in GeoTIFF format: The dataset is stored as an 8 bit integer raster with values ranging from 1 to 8 for the eight different land cover classes. The nomenclature of the coded values is as follows: 1 = Built-up, 2=open soil; 3=Coniferous wood, 4= Deciduous wood, 5=Arable land (low seasonal vegetation), 6=Herbaceous vegetation (low perennial vegetation), 7=Water, 8=Built-up with significant green share. Name of the file ugr2018_germany.tif. The dataset is zipped alongside with accompanying files: *.twf (geo-referencing world-file), *.ovr (Overlay file for quick data preview in GIS), *.clr (Color map file).

    A text file with the integer value assignment of the land cover classes. Name of the file: Legend_LC-classes.txt.

    Experimental design, materials and methods

    The first essential step to create the dataset is the automatic classification of a satellite image mosaic of all available Sentinel-2 images from May to September 2018 with a maximum cloud cover of 60 percent. Points from the 2018 LUCAS (Land use and land cover survey) dataset from Eurostat [1] were used as reference and validation data. Using Random Forest (RF) classifier [2], seven land use classes (Deciduous wood, Coniferous wood, Herbaceous vegetation (low perennial vegetation), Built-up, Open soil, Water, Arable land (low seasonal vegetation)) were first derived, which is methodologically in line with the procedure used to create the dataset "Land Cover DE - Sentinel-2 - Germany, 2015" [3]. The overall accuracy of the data is 93 % [4].

    Two downstream post-processing steps served to further qualify the product. The first step included the selective verification of pixels of the classes arable land and water. These are often misidentified by the classifier due to radiometric similarities with other land covers; in particular, radiometric signatures of water surfaces often resemble shadows or asphalt surfaces. Due to the heterogeneous inner-city structures, pixels are also frequently misclassified as cropland.

    To mitigate these errors, all pixels classified as water and arable land were matched with another data source. This consisted of binary land cover masks for these two land cover classes originating from the Monitor of Settlement and Open Space Development (IOER Monitor). For all water and cropland pixels that were outside of their respective masks, the frequencies of class assignments from the RF classifier were checked. If the assignment frequency to water or arable land was at least twice that to the subsequent class, the classification was preserved. Otherwise, the classification strength was considered too weak and the pixel was recoded to the land cover with the second largest assignment frequency.

    Furthermore, an additional land cover class "Built-up with significant vegetation share" was introduced. For this purpose, all pixels of the Built-up class were intersected with the NDVI of the satellite image mosaic and assigned to the new category if an NDVI threshold was exceeded in the pixel. The associated NDVI threshold was previously determined using highest resolution reference data of urban green structures in the cities of Dresden, Leipzig and Potsdam, which were first used to determine the true green fractions within the 10m Sentinel pixels, and based on this to determine an NDVI value that could be used as an indicator of a significant green fraction within the built-up pixel. However, due to the wide dispersion of green fraction values within the built-up areas, it is not possible to establish a universally valid green percentage value for the land cover class of Built-up with significant vegetation share. Thus, the class essentially serves to the visual differentiability of densely and loosely (i.e., vegetation-dominated) built-up areas.

    Acknowledgments

    This work was supported by the Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR) [10.06.03.18.101].The provided data has been developed and created in the framework of the research project “Wie grün sind bundesdeutsche Städte?- Fernerkundliche Erfassung und stadträumlich-funktionale Differenzierung der Grünausstattung von Städten in Deutschland (Erfassung der urbanen Grünausstattung)“ (How green are German cities?- Remote sensing and urban-functional differentiation of the green infrastructure of cities in Germany (Urban Green Infrastructure Inventory)). Further persons involved in the project were: Fabian Dosch (funding administrator at BBSR), Stefan Fina (research partner, group leader at ILS Dortmund), Annett Frick, Kathrin Wagner (research partners at LUP Potsdam).

    References

    [1] Eurostat (2021): Land cover / land use statistics database LUCAS. URL: https://ec.europa.eu/eurostat/web/lucas/data/database

    [2] L. Breiman (2001). Random forests, Mach. Learn., 45, pp. 5-32

    [3] M. Weigand, M. Wurm (2020). Land Cover DE - Sentinel-2—Germany, 2015 [Data set]. German Aerospace Center (DLR). doi: 10.15489/1CCMLAP3MN39

    [4] M. Weigand, J. Staab, M. Wurm, H. Taubenböck, (2020). Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int J Appl Earth Obs, 88, 102065. doi: https://doi.org/10.1016/j.jag.2020.102065

    [5] L. Eichler., T. Krüger, G. Meinel, G. (2020). Wie grün sind deutsche Städte? Indikatorgestützte fernerkundliche Erfassung des Stadtgrüns. AGIT Symposium 2020, 6, 306–315. doi: 10.14627/537698030

    [6] H. Taubenböck, M. Reiter, F. Dosch, T. Leichtle, M. Weigand, M. Wurm (2021). Which city is the greenest? A multi-dimensional deconstruction of city rankings. Comput Environ Urban Syst, 89, 101687. doi: 10.1016/j.compenvurbsys.2021.101687

  12. d

    Raster classification and mapping of ecological units of Southern California...

    • datadryad.org
    zip
    Updated Mar 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allan Hollander; Emma Underwood (2021). Raster classification and mapping of ecological units of Southern California [Dataset]. http://doi.org/10.25338/B8432H
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 11, 2021
    Dataset provided by
    Dryad
    Authors
    Allan Hollander; Emma Underwood
    Time period covered
    Mar 3, 2021
    Area covered
    California
    Description

    Summary of Methods for Developing Ecological Units in Southern California

    Allan Hollander and Emma Underwood, University of California Davis.

    1) Compiling GIS layers. These data were compiled from a variety of sources and resolutions (Table 1) for the southern California study area (see Methods_figure_1.png for the study area). The original resolution of these raster layers ran from 10 meters to 270 meters, and resampling was conducted so all analyses were performed at a 30 meter raster resolution. We decided not to include vegetation in the data stack as the aim was to capture biophysical characteristics and vegetation will reflect current landscape history and land use patterns (e.g. fire history, type conversion from shrubland, or agricultural use). Lakes and reservoirs were omitted from the subsequent analysis. Data compiled:

    a) Soil suborders. This was a discretely-classified raster layer with 22 soil suborder classes included in the southern California region. This was derived ...

  13. Missouri Raster Data

    • figshare.com
    tiff
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melanie Boudreau (2023). Missouri Raster Data [Dataset]. http://doi.org/10.6084/m9.figshare.23646456.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jul 7, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Melanie Boudreau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rasters assocaited with elevation (from the National elevation dataset), slope (created from the elevation dataset using ArcGIS), a Shannon diversity index as a metric of landscape fragmentation (created from the forest/shrub layer using Fragstats), distance to all roads (created in ArcGIS using a road TIGER shapefile), distance to forest/shrubs (created using NLCD 2016 data), human population density (created using data from the US Census Bureau). All rasters are at a 90m resolution.

  14. D

    Lamto GIS layer (raster dataset): oblique aerial photographs of the Lamto...

    • dataverse.ird.fr
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; S. Konaté; L. Gautier; L. Gautier; S. Konaté (2025). Lamto GIS layer (raster dataset): oblique aerial photographs of the Lamto reserve (Côte d'Ivoire) acquired by L.Gautier on April 4, 1988. [Dataset]. http://doi.org/10.23708/4DZ0CG
    Explore at:
    png(1343374), tiff(349372886), zip(327853094), zip(866315238), application/zipped-shapefile(20410)Available download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    DataSuds
    Authors
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; S. Konaté; L. Gautier; L. Gautier; S. Konaté
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.23708/4DZ0CGhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.23708/4DZ0CG

    Time period covered
    Apr 11, 1988
    Area covered
    Côte d'Ivoire
    Description

    This dataset holds the process chain to produce a orthomosaic from oblique aerial photographs acquired by Gautier using a cessna airplane and a handheld 35 mm camera on April 11, 1988 . We digitized the original colour diapos and created a orthomosaic using ground control points from Google Maps and a structure from motion software (SfM). The datasets contains the scanned diapos, the ground control points and the finale orthomosaic with a 20 cm ground resolution.

  15. d

    Geodatabase of the available top and bottom surface datasets that represent...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Geodatabase of the available top and bottom surface datasets that represent the Mississippian aquifer, Alabama, Illinois, Indiana, Iowa, Kentucky, Maryland, Missouri, Ohio, Pennsylvania, Tennessee, Virginia and West Virginia [Dataset]. https://catalog.data.gov/dataset/geodatabase-of-the-available-top-and-bottom-surface-datasets-that-represent-the-mississipp
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Iowa, Kentucky, Alabama, Virginia, Illinois, Tennessee, Pennsylvania, West Virginia, Maryland
    Description

    This geodatabase includes spatial datasets that represent the Mississippian aquifer in the States of Alabama, Illinois, Indiana, Iowa, Kentucky, Maryland, Missouri, Ohio, Pennsylvania, Tennessee, Virginia and West Virginia. The aquifer is divided into three subareas, based on the data availability. In subarea 1 (SA1), which is the aquifer extent in Iowa, data exist of the aquifer top altitude and aquifer thickness. In subarea 2 (SA2), which is the aquifer extent in Missouri, data exist of the aquifer top and bottom aquifer surface altitudes. In subarea 3 (SA3), which is the aquifer area of the remaining States, no altitude or thickness data exist. Included in this geodatabase are: (1) a feature dataset "ds40MSSPPI_altitude_and_thickness_contours that includes aquifer altitude and thickness contours used to generate the surface rasters for SA1 and SA2, (2) a feature dataset "ds40MSSPPI_extents" that includes a polygon dataset that represents the subarea extents, a polygon dataset that represents the combined overall aquifer extent, and a polygon dataset of the Ft. Dodge Fault and Manson Anomaly, (3) raster datasets that represent the altitude of the top and the bottom of the aquifer in SA1 and SA2, and (4) georeferenced images of the figures that were digitized to create the aquifer top- and bottom-altitude contours or aquifer thickness contours for SA1 and SA2. The images and digitized contours are supplied for reference. The extent of the Mississippian aquifer for all subareas was produced from the digital version of the HA-730 Mississippian aquifer extent, (USGS HA-730). For the two Subareas with vertical-surface information, SA1 and SA2, data were retrieved from the sources as described below. 1. The aquifer-altitude contours for the top and the aquifer-thickness contours for the top-to-bottom thickness of SA1 were received in digital format from the Iowa Geologic Survey. The URL for the top was ftp://ftp.igsb.uiowa.edu/GIS_Library/IA_State/Hydrologic/Ground_Waters/ Mississippian_aquifer/mississippian_topography.zip. The URL for the thickness was ftp://ftp.igsb.uiowa.edu/GIS_Library/IA_State/Hydrologic/Ground_Waters/ Mississippian_aquifer/mississippian_isopach.zip Reference for the top map is Altitude and Configuration, in feet above mean sea level, of the Mississipian Aquifer modified from a scanned image of Map 1, Sheet 1, Miscellaneous Map Series 3, Mississippian Aquifer of Iowa by P.J. Horick and W.L. Steinhilber, Iowa Geological Survey, 1973; IGS MMS-3, Map 1, Sheet 1 Reference for the thickness map is Distribution and isopach thickness, in feet, of the Mississipian Aquifer, modified from a scanned image of Map 1, Sheet 2, Miscellaneous Map Series 3, Mississippian Aquifer of Iowa by P.J. Horick and W.L. Steinhilber, Iowa Geological Survey, 1973; IGS MMS-3, Map 1, Sheet 2 The altitude contours for the top and bottom of SA2 were digitized from georeferenced figures of altitude contours in U.S. Geological Survey Professional Paper 1305 (USGS PP1305), figure 6 (for the top surface) and figure 9 (for the bottom surface). The altitude contours for SA1 and SA2 were interpolated into surface rasters within a GIS using tools that create hydrologically correct surfaces from contour data, derive the altitude from the thickness (depth from the land surface), and merge the subareas into a single surface. The primary tool was an enhanced version of "Topo to Raster" used in ArcGIS, ArcMap, Esri 2014. ArcGIS Desktop: Release 10.2 Redlands, CA: Environmental Systems Research Institute. The raster surfaces were corrected in areas where the altitude of the top of the aquifer exceeded the land surface, and where the bottom of an aquifer exceeded the altitude of the corrected top of the aquifer.

  16. Georeferenced Population Datasets of Mexico (GEO-MEX): Raster Based GIS...

    • data.nasa.gov
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Georeferenced Population Datasets of Mexico (GEO-MEX): Raster Based GIS Coverage of Mexican Population - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/georeferenced-population-datasets-of-mexico-geo-mex-raster-based-gis-coverage-of-mexican-p
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    Mexico
    Description

    The Raster Based GIS Coverage of Mexican Population is a gridded coverage (1 x 1 km) of Mexican population. The data were converted from vector into raster. The population figures were derived based on available point data (the population of known localities - 30,000 in all). Cell values were derived using a weighted moving average function (Burrough, 1986), and then calculated based on known population by state. The result from this conversion is a coverage whose population data is based on square grid cells rather than a series of vectors. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Instituto Nacional de Estadistica Geografia e Informatica (INEGI).

  17. d

    Landcover Raster Data (2010) – 6in Resolution

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Landcover Raster Data (2010) – 6in Resolution [Dataset]. https://catalog.data.gov/dataset/landcover-raster-data-2010-6in-resolution
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    6 inch resolution raster image of New York City, classified by landcover type. High resolution land cover data set for New York City. This is the 6 inch version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.

  18. McMurdo Dry Valleys GIS Raster Layers

    • search.dataone.org
    • portal.edirepository.org
    Updated Feb 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris Gardner (2016). McMurdo Dry Valleys GIS Raster Layers [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-mcm%2F6006%2F17
    Explore at:
    Dataset updated
    Feb 27, 2016
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Chris Gardner
    Time period covered
    May 1, 2007 - Nov 1, 2007
    Area covered
    Description

    Basic raster layers from the MCM-LTER spatial data holdings have been exported and symbolized. The dataset files offered here include: 30m DEM made from USGS Topo map SPOT Satellite Image 39-558 LANDSAT 7 Satellite Image Note - the SPOT and LANDSAT layers are not MCM-LTER data products.  These resources were updated last in 2007, for more up-to-date layers, and potentially, higher resolution layers, please visit the Polar Geospatial Center and other affine geospatial data clearinghouses.Â

  19. Visualize Urban Sprawl

    • hub.arcgis.com
    • rwanda-africa.hub.arcgis.com
    • +3more
    Updated Sep 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Visualize Urban Sprawl [Dataset]. https://hub.arcgis.com/content/9d344a720f274f7fb331f8ae00fecdce
    Explore at:
    Dataset updated
    Sep 12, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This template is used to compute urban growth between two land cover datasets, that are classified into 20 classes based on the Anderson Level II classification system. This raster function template is used to generate a visual representation indicating urbanization across two different time periods. Typical datasets used for this template is the National Land Cover Database. A more detailed blog on the datasets can be found on ArcGIS Blogs. This template works in ArcGIS Pro Version 2.6 and higher. It's designed to work on Enterprise 10.8.1 and higher.References:Raster functionsWhen to use this raster function templateThe template is useful to generate an intuitive visualization of urbanization across two images.Sample Images to test this againstNLCD2006 and NLCD2011How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual representation of urban sprawl across two images. Applicable geographiesThe template is designed to work globally.

  20. Vegetative Differerence Image

    • agriculture.africageoportal.com
    • uneca.africageoportal.com
    • +7more
    Updated Sep 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Vegetative Differerence Image [Dataset]. https://agriculture.africageoportal.com/content/b7addc908a58486dbc0253b052140d45
    Explore at:
    Dataset updated
    Sep 18, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Vegetative Difference Image gives an easy to interpret visual representation of vegetative increase/decrease across 2 time periods.This raster function template is used to generate a visual product. The results cannot be used for analysis. This templates generates an NDVI in the backend, hence it requires your imagery to have the red and near infrared bands. In the resulting image, greens indicate increase in vegetation, while the magenta indicates decrease in vegetationReferences:Raster functionsWhen to use this raster function templateThis template is particularly useful when trying to intuitively visualize the increase or decrease in vegetation over two time periods. How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. This index supports many satellite sensors, such as Landsat-8, Sentinel-2, Quickbird, IKONOS, Geoeye-1, and Pleiades-1.Applicable geographiesThe template uses a standard vegetation which is designed to work globally.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pictured-rocks-national-la
Organization logo

Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore

Explore at:
Dataset updated
Nov 25, 2025
Dataset provided by
National Park Servicehttp://www.nps.gov/
Area covered
Pictured Rocks
Description

The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

Search
Clear search
Close search
Google apps
Main menu